| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_CHOLMODSUPPORT_H | 
 | #define EIGEN_CHOLMODSUPPORT_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename Scalar> struct cholmod_configure_matrix; | 
 |  | 
 | template<> struct cholmod_configure_matrix<double> { | 
 |   template<typename CholmodType> | 
 |   static void run(CholmodType& mat) { | 
 |     mat.xtype = CHOLMOD_REAL; | 
 |     mat.dtype = CHOLMOD_DOUBLE; | 
 |   } | 
 | }; | 
 |  | 
 | template<> struct cholmod_configure_matrix<std::complex<double> > { | 
 |   template<typename CholmodType> | 
 |   static void run(CholmodType& mat) { | 
 |     mat.xtype = CHOLMOD_COMPLEX; | 
 |     mat.dtype = CHOLMOD_DOUBLE; | 
 |   } | 
 | }; | 
 |  | 
 | // Other scalar types are not yet supported by Cholmod | 
 | // template<> struct cholmod_configure_matrix<float> { | 
 | //   template<typename CholmodType> | 
 | //   static void run(CholmodType& mat) { | 
 | //     mat.xtype = CHOLMOD_REAL; | 
 | //     mat.dtype = CHOLMOD_SINGLE; | 
 | //   } | 
 | // }; | 
 | // | 
 | // template<> struct cholmod_configure_matrix<std::complex<float> > { | 
 | //   template<typename CholmodType> | 
 | //   static void run(CholmodType& mat) { | 
 | //     mat.xtype = CHOLMOD_COMPLEX; | 
 | //     mat.dtype = CHOLMOD_SINGLE; | 
 | //   } | 
 | // }; | 
 |  | 
 | } // namespace internal | 
 |  | 
 | /** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. | 
 |   * Note that the data are shared. | 
 |   */ | 
 | template<typename Scalar_, int Options_, typename StorageIndex_> | 
 | cholmod_sparse viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,StorageIndex_> > mat) | 
 | { | 
 |   cholmod_sparse res; | 
 |   res.nzmax   = mat.nonZeros(); | 
 |   res.nrow    = mat.rows(); | 
 |   res.ncol    = mat.cols(); | 
 |   res.p       = mat.outerIndexPtr(); | 
 |   res.i       = mat.innerIndexPtr(); | 
 |   res.x       = mat.valuePtr(); | 
 |   res.z       = 0; | 
 |   res.sorted  = 1; | 
 |   if(mat.isCompressed()) | 
 |   { | 
 |     res.packed  = 1; | 
 |     res.nz = 0; | 
 |   } | 
 |   else | 
 |   { | 
 |     res.packed  = 0; | 
 |     res.nz = mat.innerNonZeroPtr(); | 
 |   } | 
 |  | 
 |   res.dtype   = 0; | 
 |   res.stype   = -1; | 
 |  | 
 |   if (internal::is_same<StorageIndex_,int>::value) | 
 |   { | 
 |     res.itype = CHOLMOD_INT; | 
 |   } | 
 |   else if (internal::is_same<StorageIndex_,SuiteSparse_long>::value) | 
 |   { | 
 |     res.itype = CHOLMOD_LONG; | 
 |   } | 
 |   else | 
 |   { | 
 |     eigen_assert(false && "Index type not supported yet"); | 
 |   } | 
 |  | 
 |   // setup res.xtype | 
 |   internal::cholmod_configure_matrix<Scalar_>::run(res); | 
 |  | 
 |   res.stype = 0; | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | template<typename Scalar_, int Options_, typename Index_> | 
 | const cholmod_sparse viewAsCholmod(const SparseMatrix<Scalar_,Options_,Index_>& mat) | 
 | { | 
 |   cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived())); | 
 |   return res; | 
 | } | 
 |  | 
 | template<typename Scalar_, int Options_, typename Index_> | 
 | const cholmod_sparse viewAsCholmod(const SparseVector<Scalar_,Options_,Index_>& mat) | 
 | { | 
 |   cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.const_cast_derived())); | 
 |   return res; | 
 | } | 
 |  | 
 | /** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. | 
 |   * The data are not copied but shared. */ | 
 | template<typename Scalar_, int Options_, typename Index_, unsigned int UpLo> | 
 | cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<Scalar_,Options_,Index_>, UpLo>& mat) | 
 | { | 
 |   cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_,Options_,Index_> >(mat.matrix().const_cast_derived())); | 
 |  | 
 |   if(UpLo==Upper) res.stype =  1; | 
 |   if(UpLo==Lower) res.stype = -1; | 
 |   // swap stype for rowmajor matrices (only works for real matrices) | 
 |   EIGEN_STATIC_ASSERT((Options_ & RowMajorBit) == 0 || NumTraits<Scalar_>::IsComplex == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
 |   if(Options_ & RowMajorBit) res.stype *=-1; | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. | 
 |   * The data are not copied but shared. */ | 
 | template<typename Derived> | 
 | cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat) | 
 | { | 
 |   EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
 |   typedef typename Derived::Scalar Scalar; | 
 |  | 
 |   cholmod_dense res; | 
 |   res.nrow   = mat.rows(); | 
 |   res.ncol   = mat.cols(); | 
 |   res.nzmax  = res.nrow * res.ncol; | 
 |   res.d      = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); | 
 |   res.x      = (void*)(mat.derived().data()); | 
 |   res.z      = 0; | 
 |  | 
 |   internal::cholmod_configure_matrix<Scalar>::run(res); | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | /** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. | 
 |   * The data are not copied but shared. */ | 
 | template<typename Scalar, int Flags, typename StorageIndex> | 
 | Map<SparseMatrix<Scalar,Flags,StorageIndex> > viewAsEigen(cholmod_sparse& cm) | 
 | { | 
 |   return Map<SparseMatrix<Scalar,Flags,StorageIndex> > | 
 |          (cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol], | 
 |           static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) ); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // template specializations for int and long that call the correct cholmod method | 
 |  | 
 | #define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \ | 
 |     template<typename StorageIndex_> inline ret cm_ ## name       (cholmod_common &Common) { return cholmod_ ## name   (&Common); } \ | 
 |     template<>                       inline ret cm_ ## name<SuiteSparse_long> (cholmod_common &Common) { return cholmod_l_ ## name (&Common); } | 
 |  | 
 | #define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \ | 
 |     template<typename StorageIndex_> inline ret cm_ ## name       (t1& a1, cholmod_common &Common) { return cholmod_ ## name   (&a1, &Common); } \ | 
 |     template<>                       inline ret cm_ ## name<SuiteSparse_long> (t1& a1, cholmod_common &Common) { return cholmod_l_ ## name (&a1, &Common); } | 
 |  | 
 | EIGEN_CHOLMOD_SPECIALIZE0(int, start) | 
 | EIGEN_CHOLMOD_SPECIALIZE0(int, finish) | 
 |  | 
 | EIGEN_CHOLMOD_SPECIALIZE1(int, free_factor, cholmod_factor*, L) | 
 | EIGEN_CHOLMOD_SPECIALIZE1(int, free_dense,  cholmod_dense*,  X) | 
 | EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A) | 
 |  | 
 | EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A) | 
 |  | 
 | template<typename StorageIndex_> inline cholmod_dense*  cm_solve         (int sys, cholmod_factor& L, cholmod_dense&  B, cholmod_common &Common) { return cholmod_solve     (sys, &L, &B, &Common); } | 
 | template<>                       inline cholmod_dense*  cm_solve<SuiteSparse_long>   (int sys, cholmod_factor& L, cholmod_dense&  B, cholmod_common &Common) { return cholmod_l_solve   (sys, &L, &B, &Common); } | 
 |  | 
 | template<typename StorageIndex_> inline cholmod_sparse* cm_spsolve       (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_spsolve   (sys, &L, &B, &Common); } | 
 | template<>                       inline cholmod_sparse* cm_spsolve<SuiteSparse_long> (int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common &Common) { return cholmod_l_spsolve (sys, &L, &B, &Common); } | 
 |  | 
 | template<typename StorageIndex_> | 
 | inline int  cm_factorize_p       (cholmod_sparse*  A, double beta[2], StorageIndex_* fset, std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_factorize_p   (A, beta, fset, fsize, L, &Common); } | 
 | template<> | 
 | inline int  cm_factorize_p<SuiteSparse_long> (cholmod_sparse*  A, double beta[2], SuiteSparse_long* fset,          std::size_t fsize, cholmod_factor* L, cholmod_common &Common) { return cholmod_l_factorize_p (A, beta, fset, fsize, L, &Common); } | 
 |  | 
 | #undef EIGEN_CHOLMOD_SPECIALIZE0 | 
 | #undef EIGEN_CHOLMOD_SPECIALIZE1 | 
 |  | 
 | }  // namespace internal | 
 |  | 
 |  | 
 | enum CholmodMode { | 
 |   CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt | 
 | }; | 
 |  | 
 |  | 
 | /** \ingroup CholmodSupport_Module | 
 |   * \class CholmodBase | 
 |   * \brief The base class for the direct Cholesky factorization of Cholmod | 
 |   * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_, typename Derived> | 
 | class CholmodBase : public SparseSolverBase<Derived> | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<Derived> Base; | 
 |     using Base::derived; | 
 |     using Base::m_isInitialized; | 
 |   public: | 
 |     typedef MatrixType_ MatrixType; | 
 |     enum { UpLo = UpLo_ }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef MatrixType CholMatrixType; | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     enum { | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |  | 
 |   public: | 
 |  | 
 |     CholmodBase() | 
 |       : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) | 
 |     { | 
 |       EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); | 
 |       m_shiftOffset[0] = m_shiftOffset[1] = 0.0; | 
 |       internal::cm_start<StorageIndex>(m_cholmod); | 
 |     } | 
 |  | 
 |     explicit CholmodBase(const MatrixType& matrix) | 
 |       : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) | 
 |     { | 
 |       EIGEN_STATIC_ASSERT((internal::is_same<double,RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY); | 
 |       m_shiftOffset[0] = m_shiftOffset[1] = 0.0; | 
 |       internal::cm_start<StorageIndex>(m_cholmod); | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     ~CholmodBase() | 
 |     { | 
 |       if(m_cholmodFactor) | 
 |         internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod); | 
 |       internal::cm_finish<StorageIndex>(m_cholmod); | 
 |     } | 
 |  | 
 |     inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); } | 
 |     inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); } | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the matrix.appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |  | 
 |     /** Computes the sparse Cholesky decomposition of \a matrix */ | 
 |     Derived& compute(const MatrixType& matrix) | 
 |     { | 
 |       analyzePattern(matrix); | 
 |       factorize(matrix); | 
 |       return derived(); | 
 |     } | 
 |  | 
 |     /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. | 
 |       * | 
 |       * This function is particularly useful when solving for several problems having the same structure. | 
 |       * | 
 |       * \sa factorize() | 
 |       */ | 
 |     void analyzePattern(const MatrixType& matrix) | 
 |     { | 
 |       if(m_cholmodFactor) | 
 |       { | 
 |         internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod); | 
 |         m_cholmodFactor = 0; | 
 |       } | 
 |       cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); | 
 |       m_cholmodFactor = internal::cm_analyze<StorageIndex>(A, m_cholmod); | 
 |  | 
 |       this->m_isInitialized = true; | 
 |       this->m_info = Success; | 
 |       m_analysisIsOk = true; | 
 |       m_factorizationIsOk = false; | 
 |     } | 
 |  | 
 |     /** Performs a numeric decomposition of \a matrix | 
 |       * | 
 |       * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed. | 
 |       * | 
 |       * \sa analyzePattern() | 
 |       */ | 
 |     void factorize(const MatrixType& matrix) | 
 |     { | 
 |       eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
 |       cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); | 
 |       internal::cm_factorize_p<StorageIndex>(&A, m_shiftOffset, 0, 0, m_cholmodFactor, m_cholmod); | 
 |  | 
 |       // If the factorization failed, minor is the column at which it did. On success minor == n. | 
 |       this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); | 
 |       m_factorizationIsOk = true; | 
 |     } | 
 |  | 
 |     /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. | 
 |      *  See the Cholmod user guide for details. */ | 
 |     cholmod_common& cholmod() { return m_cholmod; } | 
 |  | 
 |     #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     /** \internal */ | 
 |     template<typename Rhs,typename Dest> | 
 |     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
 |     { | 
 |       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
 |       const Index size = m_cholmodFactor->n; | 
 |       EIGEN_UNUSED_VARIABLE(size); | 
 |       eigen_assert(size==b.rows()); | 
 |  | 
 |       // Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref. | 
 |       Ref<const Matrix<typename Rhs::Scalar,Dynamic,Dynamic,ColMajor> > b_ref(b.derived()); | 
 |  | 
 |       cholmod_dense b_cd = viewAsCholmod(b_ref); | 
 |       cholmod_dense* x_cd = internal::cm_solve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cd, m_cholmod); | 
 |       if(!x_cd) | 
 |       { | 
 |         this->m_info = NumericalIssue; | 
 |         return; | 
 |       } | 
 |       // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) | 
 |       // NOTE Actually, the copy can be avoided by calling cholmod_solve2 instead of cholmod_solve | 
 |       dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols()); | 
 |       internal::cm_free_dense<StorageIndex>(x_cd, m_cholmod); | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     template<typename RhsDerived, typename DestDerived> | 
 |     void _solve_impl(const SparseMatrixBase<RhsDerived> &b, SparseMatrixBase<DestDerived> &dest) const | 
 |     { | 
 |       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
 |       const Index size = m_cholmodFactor->n; | 
 |       EIGEN_UNUSED_VARIABLE(size); | 
 |       eigen_assert(size==b.rows()); | 
 |  | 
 |       // note: cs stands for Cholmod Sparse | 
 |       Ref<SparseMatrix<typename RhsDerived::Scalar,ColMajor,typename RhsDerived::StorageIndex> > b_ref(b.const_cast_derived()); | 
 |       cholmod_sparse b_cs = viewAsCholmod(b_ref); | 
 |       cholmod_sparse* x_cs = internal::cm_spsolve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cs, m_cholmod); | 
 |       if(!x_cs) | 
 |       { | 
 |         this->m_info = NumericalIssue; | 
 |         return; | 
 |       } | 
 |       // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) | 
 |       // NOTE cholmod_spsolve in fact just calls the dense solver for blocks of 4 columns at a time (similar to Eigen's sparse solver) | 
 |       dest.derived() = viewAsEigen<typename DestDerived::Scalar,ColMajor,typename DestDerived::StorageIndex>(*x_cs); | 
 |       internal::cm_free_sparse<StorageIndex>(x_cs, m_cholmod); | 
 |     } | 
 |     #endif // EIGEN_PARSED_BY_DOXYGEN | 
 |  | 
 |  | 
 |     /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. | 
 |       * | 
 |       * During the numerical factorization, an offset term is added to the diagonal coefficients:\n | 
 |       * \c d_ii = \a offset + \c d_ii | 
 |       * | 
 |       * The default is \a offset=0. | 
 |       * | 
 |       * \returns a reference to \c *this. | 
 |       */ | 
 |     Derived& setShift(const RealScalar& offset) | 
 |     { | 
 |       m_shiftOffset[0] = double(offset); | 
 |       return derived(); | 
 |     } | 
 |  | 
 |     /** \returns the determinant of the underlying matrix from the current factorization */ | 
 |     Scalar determinant() const | 
 |     { | 
 |       using std::exp; | 
 |       return exp(logDeterminant()); | 
 |     } | 
 |  | 
 |     /** \returns the log determinant of the underlying matrix from the current factorization */ | 
 |     Scalar logDeterminant() const | 
 |     { | 
 |       using std::log; | 
 |       using numext::real; | 
 |       eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); | 
 |  | 
 |       RealScalar logDet = 0; | 
 |       Scalar *x = static_cast<Scalar*>(m_cholmodFactor->x); | 
 |       if (m_cholmodFactor->is_super) | 
 |       { | 
 |         // Supernodal factorization stored as a packed list of dense column-major blocs, | 
 |         // as described by the following structure: | 
 |  | 
 |         // super[k] == index of the first column of the j-th super node | 
 |         StorageIndex *super = static_cast<StorageIndex*>(m_cholmodFactor->super); | 
 |         // pi[k] == offset to the description of row indices | 
 |         StorageIndex *pi = static_cast<StorageIndex*>(m_cholmodFactor->pi); | 
 |         // px[k] == offset to the respective dense block | 
 |         StorageIndex *px = static_cast<StorageIndex*>(m_cholmodFactor->px); | 
 |  | 
 |         Index nb_super_nodes = m_cholmodFactor->nsuper; | 
 |         for (Index k=0; k < nb_super_nodes; ++k) | 
 |         { | 
 |           StorageIndex ncols = super[k + 1] - super[k]; | 
 |           StorageIndex nrows = pi[k + 1] - pi[k]; | 
 |  | 
 |           Map<const Array<Scalar,1,Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows+1)); | 
 |           logDet += sk.real().log().sum(); | 
 |         } | 
 |       } | 
 |       else | 
 |       { | 
 |         // Simplicial factorization stored as standard CSC matrix. | 
 |         StorageIndex *p = static_cast<StorageIndex*>(m_cholmodFactor->p); | 
 |         Index size = m_cholmodFactor->n; | 
 |         for (Index k=0; k<size; ++k) | 
 |           logDet += log(real( x[p[k]] )); | 
 |       } | 
 |       if (m_cholmodFactor->is_ll) | 
 |         logDet *= 2.0; | 
 |       return logDet; | 
 |     } | 
 |  | 
 |     template<typename Stream> | 
 |     void dumpMemory(Stream& /*s*/) | 
 |     {} | 
 |  | 
 |   protected: | 
 |     mutable cholmod_common m_cholmod; | 
 |     cholmod_factor* m_cholmodFactor; | 
 |     double m_shiftOffset[2]; | 
 |     mutable ComputationInfo m_info; | 
 |     int m_factorizationIsOk; | 
 |     int m_analysisIsOk; | 
 | }; | 
 |  | 
 | /** \ingroup CholmodSupport_Module | 
 |   * \class CholmodSimplicialLLT | 
 |   * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization | 
 |   * using the Cholmod library. | 
 |   * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. | 
 |   * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
 |   * X and B can be either dense or sparse. | 
 |   * | 
 |   * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower | 
 |   *               or Upper. Default is Lower. | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
 |   * | 
 |   * \warning Only double precision real and complex scalar types are supported by Cholmod. | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_ = Lower> | 
 | class CholmodSimplicialLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT<MatrixType_, UpLo_> > | 
 | { | 
 |     typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT> Base; | 
 |     using Base::m_cholmod; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef MatrixType_ MatrixType; | 
 |  | 
 |     CholmodSimplicialLLT() : Base() { init(); } | 
 |  | 
 |     CholmodSimplicialLLT(const MatrixType& matrix) : Base() | 
 |     { | 
 |       init(); | 
 |       this->compute(matrix); | 
 |     } | 
 |  | 
 |     ~CholmodSimplicialLLT() {} | 
 |   protected: | 
 |     void init() | 
 |     { | 
 |       m_cholmod.final_asis = 0; | 
 |       m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
 |       m_cholmod.final_ll = 1; | 
 |     } | 
 | }; | 
 |  | 
 |  | 
 | /** \ingroup CholmodSupport_Module | 
 |   * \class CholmodSimplicialLDLT | 
 |   * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization | 
 |   * using the Cholmod library. | 
 |   * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest. | 
 |   * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
 |   * X and B can be either dense or sparse. | 
 |   * | 
 |   * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower | 
 |   *               or Upper. Default is Lower. | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
 |   * | 
 |   * \warning Only double precision real and complex scalar types are supported by Cholmod. | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_ = Lower> | 
 | class CholmodSimplicialLDLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT<MatrixType_, UpLo_> > | 
 | { | 
 |     typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT> Base; | 
 |     using Base::m_cholmod; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef MatrixType_ MatrixType; | 
 |  | 
 |     CholmodSimplicialLDLT() : Base() { init(); } | 
 |  | 
 |     CholmodSimplicialLDLT(const MatrixType& matrix) : Base() | 
 |     { | 
 |       init(); | 
 |       this->compute(matrix); | 
 |     } | 
 |  | 
 |     ~CholmodSimplicialLDLT() {} | 
 |   protected: | 
 |     void init() | 
 |     { | 
 |       m_cholmod.final_asis = 1; | 
 |       m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup CholmodSupport_Module | 
 |   * \class CholmodSupernodalLLT | 
 |   * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization | 
 |   * using the Cholmod library. | 
 |   * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. | 
 |   * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
 |   * X and B can be either dense or sparse. | 
 |   * | 
 |   * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower | 
 |   *               or Upper. Default is Lower. | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
 |   * | 
 |   * \warning Only double precision real and complex scalar types are supported by Cholmod. | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_ = Lower> | 
 | class CholmodSupernodalLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT<MatrixType_, UpLo_> > | 
 | { | 
 |     typedef CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT> Base; | 
 |     using Base::m_cholmod; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef MatrixType_ MatrixType; | 
 |  | 
 |     CholmodSupernodalLLT() : Base() { init(); } | 
 |  | 
 |     CholmodSupernodalLLT(const MatrixType& matrix) : Base() | 
 |     { | 
 |       init(); | 
 |       this->compute(matrix); | 
 |     } | 
 |  | 
 |     ~CholmodSupernodalLLT() {} | 
 |   protected: | 
 |     void init() | 
 |     { | 
 |       m_cholmod.final_asis = 1; | 
 |       m_cholmod.supernodal = CHOLMOD_SUPERNODAL; | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup CholmodSupport_Module | 
 |   * \class CholmodDecomposition | 
 |   * \brief A general Cholesky factorization and solver based on Cholmod | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization | 
 |   * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices | 
 |   * X and B can be either dense or sparse. | 
 |   * | 
 |   * This variant permits to change the underlying Cholesky method at runtime. | 
 |   * On the other hand, it does not provide access to the result of the factorization. | 
 |   * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. | 
 |   * | 
 |   * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower | 
 |   *               or Upper. Default is Lower. | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. | 
 |   * | 
 |   * \warning Only double precision real and complex scalar types are supported by Cholmod. | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept | 
 |   */ | 
 | template<typename MatrixType_, int UpLo_ = Lower> | 
 | class CholmodDecomposition : public CholmodBase<MatrixType_, UpLo_, CholmodDecomposition<MatrixType_, UpLo_> > | 
 | { | 
 |     typedef CholmodBase<MatrixType_, UpLo_, CholmodDecomposition> Base; | 
 |     using Base::m_cholmod; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef MatrixType_ MatrixType; | 
 |  | 
 |     CholmodDecomposition() : Base() { init(); } | 
 |  | 
 |     CholmodDecomposition(const MatrixType& matrix) : Base() | 
 |     { | 
 |       init(); | 
 |       this->compute(matrix); | 
 |     } | 
 |  | 
 |     ~CholmodDecomposition() {} | 
 |  | 
 |     void setMode(CholmodMode mode) | 
 |     { | 
 |       switch(mode) | 
 |       { | 
 |         case CholmodAuto: | 
 |           m_cholmod.final_asis = 1; | 
 |           m_cholmod.supernodal = CHOLMOD_AUTO; | 
 |           break; | 
 |         case CholmodSimplicialLLt: | 
 |           m_cholmod.final_asis = 0; | 
 |           m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
 |           m_cholmod.final_ll = 1; | 
 |           break; | 
 |         case CholmodSupernodalLLt: | 
 |           m_cholmod.final_asis = 1; | 
 |           m_cholmod.supernodal = CHOLMOD_SUPERNODAL; | 
 |           break; | 
 |         case CholmodLDLt: | 
 |           m_cholmod.final_asis = 1; | 
 |           m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; | 
 |           break; | 
 |         default: | 
 |           break; | 
 |       } | 
 |     } | 
 |   protected: | 
 |     void init() | 
 |     { | 
 |       m_cholmod.final_asis = 1; | 
 |       m_cholmod.supernodal = CHOLMOD_AUTO; | 
 |     } | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_CHOLMODSUPPORT_H |