|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_TRANSPOSITIONS_H | 
|  | #define EIGEN_TRANSPOSITIONS_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename Derived> | 
|  | class TranspositionsBase | 
|  | { | 
|  | typedef internal::traits<Derived> Traits; | 
|  |  | 
|  | public: | 
|  |  | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | typedef typename IndicesType::Scalar StorageIndex; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | Derived& derived() { return *static_cast<Derived*>(this); } | 
|  | EIGEN_DEVICE_FUNC | 
|  | const Derived& derived() const { return *static_cast<const Derived*>(this); } | 
|  |  | 
|  | /** Copies the \a other transpositions into \c *this */ | 
|  | template<typename OtherDerived> | 
|  | Derived& operator=(const TranspositionsBase<OtherDerived>& other) | 
|  | { | 
|  | indices() = other.indices(); | 
|  | return derived(); | 
|  | } | 
|  |  | 
|  | /** \returns the number of transpositions */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | Index size() const { return indices().size(); } | 
|  | /** \returns the number of rows of the equivalent permutation matrix */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | Index rows() const { return indices().size(); } | 
|  | /** \returns the number of columns of the equivalent permutation matrix */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | Index cols() const { return indices().size(); } | 
|  |  | 
|  | /** Direct access to the underlying index vector */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline const StorageIndex& coeff(Index i) const { return indices().coeff(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline StorageIndex& coeffRef(Index i) { return indices().coeffRef(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline const StorageIndex& operator()(Index i) const { return indices()(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline StorageIndex& operator()(Index i) { return indices()(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline const StorageIndex& operator[](Index i) const { return indices()(i); } | 
|  | /** Direct access to the underlying index vector */ | 
|  | inline StorageIndex& operator[](Index i) { return indices()(i); } | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | const IndicesType& indices() const { return derived().indices(); } | 
|  | /** \returns a reference to the stored array representing the transpositions. */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | IndicesType& indices() { return derived().indices(); } | 
|  |  | 
|  | /** Resizes to given size. */ | 
|  | inline void resize(Index newSize) | 
|  | { | 
|  | indices().resize(newSize); | 
|  | } | 
|  |  | 
|  | /** Sets \c *this to represents an identity transformation */ | 
|  | void setIdentity() | 
|  | { | 
|  | for(StorageIndex i = 0; i < indices().size(); ++i) | 
|  | coeffRef(i) = i; | 
|  | } | 
|  |  | 
|  | // FIXME: do we want such methods ? | 
|  | // might be useful when the target matrix expression is complex, e.g.: | 
|  | // object.matrix().block(..,..,..,..) = trans * object.matrix().block(..,..,..,..); | 
|  | /* | 
|  | template<typename MatrixType> | 
|  | void applyForwardToRows(MatrixType& mat) const | 
|  | { | 
|  | for(Index k=0 ; k<size() ; ++k) | 
|  | if(m_indices(k)!=k) | 
|  | mat.row(k).swap(mat.row(m_indices(k))); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void applyBackwardToRows(MatrixType& mat) const | 
|  | { | 
|  | for(Index k=size()-1 ; k>=0 ; --k) | 
|  | if(m_indices(k)!=k) | 
|  | mat.row(k).swap(mat.row(m_indices(k))); | 
|  | } | 
|  | */ | 
|  |  | 
|  | /** \returns the inverse transformation */ | 
|  | inline Transpose<TranspositionsBase> inverse() const | 
|  | { return Transpose<TranspositionsBase>(derived()); } | 
|  |  | 
|  | /** \returns the tranpose transformation */ | 
|  | inline Transpose<TranspositionsBase> transpose() const | 
|  | { return Transpose<TranspositionsBase>(derived()); } | 
|  |  | 
|  | protected: | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
|  | struct traits<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> > | 
|  | : traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> > | 
|  | { | 
|  | typedef Matrix<StorageIndex_, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; | 
|  | typedef TranspositionsStorage StorageKind; | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** \class Transpositions | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Represents a sequence of transpositions (row/column interchange) | 
|  | * | 
|  | * \tparam SizeAtCompileTime the number of transpositions, or Dynamic | 
|  | * \tparam MaxSizeAtCompileTime the maximum number of transpositions, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. | 
|  | * | 
|  | * This class represents a permutation transformation as a sequence of \em n transpositions | 
|  | * \f$[T_{n-1} \ldots T_{i} \ldots T_{0}]\f$. It is internally stored as a vector of integers \c indices. | 
|  | * Each transposition \f$ T_{i} \f$ applied on the left of a matrix (\f$ T_{i} M\f$) interchanges | 
|  | * the rows \c i and \c indices[i] of the matrix \c M. | 
|  | * A transposition applied on the right (e.g., \f$ M T_{i}\f$) yields a column interchange. | 
|  | * | 
|  | * Compared to the class PermutationMatrix, such a sequence of transpositions is what is | 
|  | * computed during a decomposition with pivoting, and it is faster when applying the permutation in-place. | 
|  | * | 
|  | * To apply a sequence of transpositions to a matrix, simply use the operator * as in the following example: | 
|  | * \code | 
|  | * Transpositions tr; | 
|  | * MatrixXf mat; | 
|  | * mat = tr * mat; | 
|  | * \endcode | 
|  | * In this example, we detect that the matrix appears on both side, and so the transpositions | 
|  | * are applied in-place without any temporary or extra copy. | 
|  | * | 
|  | * \sa class PermutationMatrix | 
|  | */ | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_> | 
|  | class Transpositions : public TranspositionsBase<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> > | 
|  | { | 
|  | typedef internal::traits<Transpositions> Traits; | 
|  | public: | 
|  |  | 
|  | typedef TranspositionsBase<Transpositions> Base; | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | typedef typename IndicesType::Scalar StorageIndex; | 
|  |  | 
|  | inline Transpositions() {} | 
|  |  | 
|  | /** Copy constructor. */ | 
|  | template<typename OtherDerived> | 
|  | inline Transpositions(const TranspositionsBase<OtherDerived>& other) | 
|  | : m_indices(other.indices()) {} | 
|  |  | 
|  | /** Generic constructor from expression of the transposition indices. */ | 
|  | template<typename Other> | 
|  | explicit inline Transpositions(const MatrixBase<Other>& indices) : m_indices(indices) | 
|  | {} | 
|  |  | 
|  | /** Copies the \a other transpositions into \c *this */ | 
|  | template<typename OtherDerived> | 
|  | Transpositions& operator=(const TranspositionsBase<OtherDerived>& other) | 
|  | { | 
|  | return Base::operator=(other); | 
|  | } | 
|  |  | 
|  | /** Constructs an uninitialized permutation matrix of given size. | 
|  | */ | 
|  | inline Transpositions(Index size) : m_indices(size) | 
|  | {} | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  | /** \returns a reference to the stored array representing the transpositions. */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | IndicesType m_indices; | 
|  | }; | 
|  |  | 
|  |  | 
|  | namespace internal { | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int _PacketAccess> | 
|  | struct traits<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,_PacketAccess> > | 
|  | : traits<PermutationMatrix<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_> > | 
|  | { | 
|  | typedef Map<const Matrix<StorageIndex_,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1>, _PacketAccess> IndicesType; | 
|  | typedef StorageIndex_ StorageIndex; | 
|  | typedef TranspositionsStorage StorageKind; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename StorageIndex_, int PacketAccess> | 
|  | class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess> | 
|  | : public TranspositionsBase<Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,StorageIndex_>,PacketAccess> > | 
|  | { | 
|  | typedef internal::traits<Map> Traits; | 
|  | public: | 
|  |  | 
|  | typedef TranspositionsBase<Map> Base; | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | typedef typename IndicesType::Scalar StorageIndex; | 
|  |  | 
|  | explicit inline Map(const StorageIndex* indicesPtr) | 
|  | : m_indices(indicesPtr) | 
|  | {} | 
|  |  | 
|  | inline Map(const StorageIndex* indicesPtr, Index size) | 
|  | : m_indices(indicesPtr,size) | 
|  | {} | 
|  |  | 
|  | /** Copies the \a other transpositions into \c *this */ | 
|  | template<typename OtherDerived> | 
|  | Map& operator=(const TranspositionsBase<OtherDerived>& other) | 
|  | { | 
|  | return Base::operator=(other); | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | Map& operator=(const Map& other) | 
|  | { | 
|  | m_indices = other.m_indices; | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  |  | 
|  | /** \returns a reference to the stored array representing the transpositions. */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | IndicesType m_indices; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  | template<typename IndicesType_> | 
|  | struct traits<TranspositionsWrapper<IndicesType_> > | 
|  | : traits<PermutationWrapper<IndicesType_> > | 
|  | { | 
|  | typedef TranspositionsStorage StorageKind; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template<typename IndicesType_> | 
|  | class TranspositionsWrapper | 
|  | : public TranspositionsBase<TranspositionsWrapper<IndicesType_> > | 
|  | { | 
|  | typedef internal::traits<TranspositionsWrapper> Traits; | 
|  | public: | 
|  |  | 
|  | typedef TranspositionsBase<TranspositionsWrapper> Base; | 
|  | typedef typename Traits::IndicesType IndicesType; | 
|  | typedef typename IndicesType::Scalar StorageIndex; | 
|  |  | 
|  | explicit inline TranspositionsWrapper(IndicesType& indices) | 
|  | : m_indices(indices) | 
|  | {} | 
|  |  | 
|  | /** Copies the \a other transpositions into \c *this */ | 
|  | template<typename OtherDerived> | 
|  | TranspositionsWrapper& operator=(const TranspositionsBase<OtherDerived>& other) | 
|  | { | 
|  | return Base::operator=(other); | 
|  | } | 
|  |  | 
|  | /** const version of indices(). */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | const IndicesType& indices() const { return m_indices; } | 
|  |  | 
|  | /** \returns a reference to the stored array representing the transpositions. */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | IndicesType& indices() { return m_indices; } | 
|  |  | 
|  | protected: | 
|  |  | 
|  | typename IndicesType::Nested m_indices; | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | /** \returns the \a matrix with the \a transpositions applied to the columns. | 
|  | */ | 
|  | template<typename MatrixDerived, typename TranspositionsDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | const Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> | 
|  | operator*(const MatrixBase<MatrixDerived> &matrix, | 
|  | const TranspositionsBase<TranspositionsDerived>& transpositions) | 
|  | { | 
|  | return Product<MatrixDerived, TranspositionsDerived, AliasFreeProduct> | 
|  | (matrix.derived(), transpositions.derived()); | 
|  | } | 
|  |  | 
|  | /** \returns the \a matrix with the \a transpositions applied to the rows. | 
|  | */ | 
|  | template<typename TranspositionsDerived, typename MatrixDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | const Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> | 
|  | operator*(const TranspositionsBase<TranspositionsDerived> &transpositions, | 
|  | const MatrixBase<MatrixDerived>& matrix) | 
|  | { | 
|  | return Product<TranspositionsDerived, MatrixDerived, AliasFreeProduct> | 
|  | (transpositions.derived(), matrix.derived()); | 
|  | } | 
|  |  | 
|  | // Template partial specialization for transposed/inverse transpositions | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Derived> | 
|  | struct traits<Transpose<TranspositionsBase<Derived> > > | 
|  | : traits<Derived> | 
|  | {}; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | template<typename TranspositionsDerived> | 
|  | class Transpose<TranspositionsBase<TranspositionsDerived> > | 
|  | { | 
|  | typedef TranspositionsDerived TranspositionType; | 
|  | typedef typename TranspositionType::IndicesType IndicesType; | 
|  | public: | 
|  |  | 
|  | explicit Transpose(const TranspositionType& t) : m_transpositions(t) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR | 
|  | Index size() const EIGEN_NOEXCEPT { return m_transpositions.size(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR | 
|  | Index rows() const EIGEN_NOEXCEPT { return m_transpositions.size(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR | 
|  | Index cols() const EIGEN_NOEXCEPT { return m_transpositions.size(); } | 
|  |  | 
|  | /** \returns the \a matrix with the inverse transpositions applied to the columns. | 
|  | */ | 
|  | template<typename OtherDerived> friend | 
|  | const Product<OtherDerived, Transpose, AliasFreeProduct> | 
|  | operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trt) | 
|  | { | 
|  | return Product<OtherDerived, Transpose, AliasFreeProduct>(matrix.derived(), trt); | 
|  | } | 
|  |  | 
|  | /** \returns the \a matrix with the inverse transpositions applied to the rows. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | const Product<Transpose, OtherDerived, AliasFreeProduct> | 
|  | operator*(const MatrixBase<OtherDerived>& matrix) const | 
|  | { | 
|  | return Product<Transpose, OtherDerived, AliasFreeProduct>(*this, matrix.derived()); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | const TranspositionType& nestedExpression() const { return m_transpositions; } | 
|  |  | 
|  | protected: | 
|  | const TranspositionType& m_transpositions; | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_TRANSPOSITIONS_H |