| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2010 Vincent Lejeune | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_QR_H | 
 | #define EIGEN_QR_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 | template<typename MatrixType_> struct traits<HouseholderQR<MatrixType_> > | 
 |  : traits<MatrixType_> | 
 | { | 
 |   typedef MatrixXpr XprKind; | 
 |   typedef SolverStorage StorageKind; | 
 |   typedef int StorageIndex; | 
 |   enum { Flags = 0 }; | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /** \ingroup QR_Module | 
 |   * | 
 |   * | 
 |   * \class HouseholderQR | 
 |   * | 
 |   * \brief Householder QR decomposition of a matrix | 
 |   * | 
 |   * \tparam MatrixType_ the type of the matrix of which we are computing the QR decomposition | 
 |   * | 
 |   * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R | 
 |   * such that  | 
 |   * \f[ | 
 |   *  \mathbf{A} = \mathbf{Q} \, \mathbf{R} | 
 |   * \f] | 
 |   * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. | 
 |   * The result is stored in a compact way compatible with LAPACK. | 
 |   * | 
 |   * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. | 
 |   * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. | 
 |   * | 
 |   * This Householder QR decomposition is faster, but less numerically stable and less feature-full than | 
 |   * FullPivHouseholderQR or ColPivHouseholderQR. | 
 |   * | 
 |   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
 |   * | 
 |   * \sa MatrixBase::householderQr() | 
 |   */ | 
 | template<typename MatrixType_> class HouseholderQR | 
 |         : public SolverBase<HouseholderQR<MatrixType_> > | 
 | { | 
 |   public: | 
 |  | 
 |     typedef MatrixType_ MatrixType; | 
 |     typedef SolverBase<HouseholderQR> Base; | 
 |     friend class SolverBase<HouseholderQR>; | 
 |  | 
 |     EIGEN_GENERIC_PUBLIC_INTERFACE(HouseholderQR) | 
 |     enum { | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |     }; | 
 |     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; | 
 |     typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; | 
 |     typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; | 
 |     typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; | 
 |  | 
 |     /** | 
 |       * \brief Default Constructor. | 
 |       * | 
 |       * The default constructor is useful in cases in which the user intends to | 
 |       * perform decompositions via HouseholderQR::compute(const MatrixType&). | 
 |       */ | 
 |     HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} | 
 |  | 
 |     /** \brief Default Constructor with memory preallocation | 
 |       * | 
 |       * Like the default constructor but with preallocation of the internal data | 
 |       * according to the specified problem \a size. | 
 |       * \sa HouseholderQR() | 
 |       */ | 
 |     HouseholderQR(Index rows, Index cols) | 
 |       : m_qr(rows, cols), | 
 |         m_hCoeffs((std::min)(rows,cols)), | 
 |         m_temp(cols), | 
 |         m_isInitialized(false) {} | 
 |  | 
 |     /** \brief Constructs a QR factorization from a given matrix | 
 |       * | 
 |       * This constructor computes the QR factorization of the matrix \a matrix by calling | 
 |       * the method compute(). It is a short cut for: | 
 |       *  | 
 |       * \code | 
 |       * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); | 
 |       * qr.compute(matrix); | 
 |       * \endcode | 
 |       *  | 
 |       * \sa compute() | 
 |       */ | 
 |     template<typename InputType> | 
 |     explicit HouseholderQR(const EigenBase<InputType>& matrix) | 
 |       : m_qr(matrix.rows(), matrix.cols()), | 
 |         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), | 
 |         m_temp(matrix.cols()), | 
 |         m_isInitialized(false) | 
 |     { | 
 |       compute(matrix.derived()); | 
 |     } | 
 |  | 
 |  | 
 |     /** \brief Constructs a QR factorization from a given matrix | 
 |       * | 
 |       * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when | 
 |       * \c MatrixType is a Eigen::Ref. | 
 |       * | 
 |       * \sa HouseholderQR(const EigenBase&) | 
 |       */ | 
 |     template<typename InputType> | 
 |     explicit HouseholderQR(EigenBase<InputType>& matrix) | 
 |       : m_qr(matrix.derived()), | 
 |         m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), | 
 |         m_temp(matrix.cols()), | 
 |         m_isInitialized(false) | 
 |     { | 
 |       computeInPlace(); | 
 |     } | 
 |  | 
 |     #ifdef EIGEN_PARSED_BY_DOXYGEN | 
 |     /** This method finds a solution x to the equation Ax=b, where A is the matrix of which | 
 |       * *this is the QR decomposition, if any exists. | 
 |       * | 
 |       * \param b the right-hand-side of the equation to solve. | 
 |       * | 
 |       * \returns a solution. | 
 |       * | 
 |       * \note_about_checking_solutions | 
 |       * | 
 |       * \note_about_arbitrary_choice_of_solution | 
 |       * | 
 |       * Example: \include HouseholderQR_solve.cpp | 
 |       * Output: \verbinclude HouseholderQR_solve.out | 
 |       */ | 
 |     template<typename Rhs> | 
 |     inline const Solve<HouseholderQR, Rhs> | 
 |     solve(const MatrixBase<Rhs>& b) const; | 
 |     #endif | 
 |  | 
 |     /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. | 
 |       * | 
 |       * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. | 
 |       * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: | 
 |       * | 
 |       * Example: \include HouseholderQR_householderQ.cpp | 
 |       * Output: \verbinclude HouseholderQR_householderQ.out | 
 |       */ | 
 |     HouseholderSequenceType householderQ() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
 |       return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); | 
 |     } | 
 |  | 
 |     /** \returns a reference to the matrix where the Householder QR decomposition is stored | 
 |       * in a LAPACK-compatible way. | 
 |       */ | 
 |     const MatrixType& matrixQR() const | 
 |     { | 
 |         eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
 |         return m_qr; | 
 |     } | 
 |  | 
 |     template<typename InputType> | 
 |     HouseholderQR& compute(const EigenBase<InputType>& matrix) { | 
 |       m_qr = matrix.derived(); | 
 |       computeInPlace(); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     /** \returns the absolute value of the determinant of the matrix of which | 
 |       * *this is the QR decomposition. It has only linear complexity | 
 |       * (that is, O(n) where n is the dimension of the square matrix) | 
 |       * as the QR decomposition has already been computed. | 
 |       * | 
 |       * \note This is only for square matrices. | 
 |       * | 
 |       * \warning a determinant can be very big or small, so for matrices | 
 |       * of large enough dimension, there is a risk of overflow/underflow. | 
 |       * One way to work around that is to use logAbsDeterminant() instead. | 
 |       * | 
 |       * \sa logAbsDeterminant(), MatrixBase::determinant() | 
 |       */ | 
 |     typename MatrixType::RealScalar absDeterminant() const; | 
 |  | 
 |     /** \returns the natural log of the absolute value of the determinant of the matrix of which | 
 |       * *this is the QR decomposition. It has only linear complexity | 
 |       * (that is, O(n) where n is the dimension of the square matrix) | 
 |       * as the QR decomposition has already been computed. | 
 |       * | 
 |       * \note This is only for square matrices. | 
 |       * | 
 |       * \note This method is useful to work around the risk of overflow/underflow that's inherent | 
 |       * to determinant computation. | 
 |       * | 
 |       * \sa absDeterminant(), MatrixBase::determinant() | 
 |       */ | 
 |     typename MatrixType::RealScalar logAbsDeterminant() const; | 
 |  | 
 |     inline Index rows() const { return m_qr.rows(); } | 
 |     inline Index cols() const { return m_qr.cols(); } | 
 |  | 
 |     /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. | 
 |       *  | 
 |       * For advanced uses only. | 
 |       */ | 
 |     const HCoeffsType& hCoeffs() const { return m_hCoeffs; } | 
 |  | 
 |     #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     template<typename RhsType, typename DstType> | 
 |     void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
 |  | 
 |     template<bool Conjugate, typename RhsType, typename DstType> | 
 |     void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
 |     #endif | 
 |  | 
 |   protected: | 
 |  | 
 |     EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |  | 
 |     void computeInPlace(); | 
 |  | 
 |     MatrixType m_qr; | 
 |     HCoeffsType m_hCoeffs; | 
 |     RowVectorType m_temp; | 
 |     bool m_isInitialized; | 
 | }; | 
 |  | 
 | template<typename MatrixType> | 
 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const | 
 | { | 
 |   using std::abs; | 
 |   eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
 |   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
 |   return abs(m_qr.diagonal().prod()); | 
 | } | 
 |  | 
 | template<typename MatrixType> | 
 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const | 
 | { | 
 |   eigen_assert(m_isInitialized && "HouseholderQR is not initialized."); | 
 |   eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); | 
 |   return m_qr.diagonal().cwiseAbs().array().log().sum(); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal */ | 
 | template<typename MatrixQR, typename HCoeffs> | 
 | void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) | 
 | { | 
 |   typedef typename MatrixQR::Scalar Scalar; | 
 |   typedef typename MatrixQR::RealScalar RealScalar; | 
 |   Index rows = mat.rows(); | 
 |   Index cols = mat.cols(); | 
 |   Index size = (std::min)(rows,cols); | 
 |  | 
 |   eigen_assert(hCoeffs.size() == size); | 
 |  | 
 |   typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; | 
 |   TempType tempVector; | 
 |   if(tempData==0) | 
 |   { | 
 |     tempVector.resize(cols); | 
 |     tempData = tempVector.data(); | 
 |   } | 
 |  | 
 |   for(Index k = 0; k < size; ++k) | 
 |   { | 
 |     Index remainingRows = rows - k; | 
 |     Index remainingCols = cols - k - 1; | 
 |  | 
 |     RealScalar beta; | 
 |     mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); | 
 |     mat.coeffRef(k,k) = beta; | 
 |  | 
 |     // apply H to remaining part of m_qr from the left | 
 |     mat.bottomRightCorner(remainingRows, remainingCols) | 
 |         .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); | 
 |   } | 
 | } | 
 |  | 
 | /** \internal */ | 
 | template<typename MatrixQR, typename HCoeffs, | 
 |   typename MatrixQRScalar = typename MatrixQR::Scalar, | 
 |   bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)> | 
 | struct householder_qr_inplace_blocked | 
 | { | 
 |   // This is specialized for LAPACK-supported Scalar types in HouseholderQR_LAPACKE.h | 
 |   static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32, | 
 |       typename MatrixQR::Scalar* tempData = 0) | 
 |   { | 
 |     typedef typename MatrixQR::Scalar Scalar; | 
 |     typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; | 
 |  | 
 |     Index rows = mat.rows(); | 
 |     Index cols = mat.cols(); | 
 |     Index size = (std::min)(rows, cols); | 
 |  | 
 |     typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; | 
 |     TempType tempVector; | 
 |     if(tempData==0) | 
 |     { | 
 |       tempVector.resize(cols); | 
 |       tempData = tempVector.data(); | 
 |     } | 
 |  | 
 |     Index blockSize = (std::min)(maxBlockSize,size); | 
 |  | 
 |     Index k = 0; | 
 |     for (k = 0; k < size; k += blockSize) | 
 |     { | 
 |       Index bs = (std::min)(size-k,blockSize);  // actual size of the block | 
 |       Index tcols = cols - k - bs;              // trailing columns | 
 |       Index brows = rows-k;                     // rows of the block | 
 |  | 
 |       // partition the matrix: | 
 |       //        A00 | A01 | A02 | 
 |       // mat  = A10 | A11 | A12 | 
 |       //        A20 | A21 | A22 | 
 |       // and performs the qr dec of [A11^T A12^T]^T | 
 |       // and update [A21^T A22^T]^T using level 3 operations. | 
 |       // Finally, the algorithm continue on A22 | 
 |  | 
 |       BlockType A11_21 = mat.block(k,k,brows,bs); | 
 |       Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); | 
 |  | 
 |       householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); | 
 |  | 
 |       if(tcols) | 
 |       { | 
 |         BlockType A21_22 = mat.block(k,k+bs,brows,tcols); | 
 |         apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward | 
 |       } | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 | template<typename MatrixType_> | 
 | template<typename RhsType, typename DstType> | 
 | void HouseholderQR<MatrixType_>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
 | { | 
 |   const Index rank = (std::min)(rows(), cols()); | 
 |  | 
 |   typename RhsType::PlainObject c(rhs); | 
 |  | 
 |   c.applyOnTheLeft(householderQ().setLength(rank).adjoint() ); | 
 |  | 
 |   m_qr.topLeftCorner(rank, rank) | 
 |       .template triangularView<Upper>() | 
 |       .solveInPlace(c.topRows(rank)); | 
 |  | 
 |   dst.topRows(rank) = c.topRows(rank); | 
 |   dst.bottomRows(cols()-rank).setZero(); | 
 | } | 
 |  | 
 | template<typename MatrixType_> | 
 | template<bool Conjugate, typename RhsType, typename DstType> | 
 | void HouseholderQR<MatrixType_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
 | { | 
 |   const Index rank = (std::min)(rows(), cols()); | 
 |  | 
 |   typename RhsType::PlainObject c(rhs); | 
 |  | 
 |   m_qr.topLeftCorner(rank, rank) | 
 |       .template triangularView<Upper>() | 
 |       .transpose().template conjugateIf<Conjugate>() | 
 |       .solveInPlace(c.topRows(rank)); | 
 |  | 
 |   dst.topRows(rank) = c.topRows(rank); | 
 |   dst.bottomRows(rows()-rank).setZero(); | 
 |  | 
 |   dst.applyOnTheLeft(householderQ().setLength(rank).template conjugateIf<!Conjugate>() ); | 
 | } | 
 | #endif | 
 |  | 
 | /** Performs the QR factorization of the given matrix \a matrix. The result of | 
 |   * the factorization is stored into \c *this, and a reference to \c *this | 
 |   * is returned. | 
 |   * | 
 |   * \sa class HouseholderQR, HouseholderQR(const MatrixType&) | 
 |   */ | 
 | template<typename MatrixType> | 
 | void HouseholderQR<MatrixType>::computeInPlace() | 
 | { | 
 |   Index rows = m_qr.rows(); | 
 |   Index cols = m_qr.cols(); | 
 |   Index size = (std::min)(rows,cols); | 
 |  | 
 |   m_hCoeffs.resize(size); | 
 |  | 
 |   m_temp.resize(cols); | 
 |  | 
 |   internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data()); | 
 |  | 
 |   m_isInitialized = true; | 
 | } | 
 |  | 
 | /** \return the Householder QR decomposition of \c *this. | 
 |   * | 
 |   * \sa class HouseholderQR | 
 |   */ | 
 | template<typename Derived> | 
 | const HouseholderQR<typename MatrixBase<Derived>::PlainObject> | 
 | MatrixBase<Derived>::householderQr() const | 
 | { | 
 |   return HouseholderQR<PlainObject>(eval()); | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_QR_H |