|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SUITESPARSEQRSUPPORT_H | 
|  | #define EIGEN_SUITESPARSEQRSUPPORT_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename MatrixType> class SPQR; | 
|  | template<typename SPQRType> struct SPQRMatrixQReturnType; | 
|  | template<typename SPQRType> struct SPQRMatrixQTransposeReturnType; | 
|  | template <typename SPQRType, typename Derived> struct SPQR_QProduct; | 
|  | namespace internal { | 
|  | template <typename SPQRType> struct traits<SPQRMatrixQReturnType<SPQRType> > | 
|  | { | 
|  | typedef typename SPQRType::MatrixType ReturnType; | 
|  | }; | 
|  | template <typename SPQRType> struct traits<SPQRMatrixQTransposeReturnType<SPQRType> > | 
|  | { | 
|  | typedef typename SPQRType::MatrixType ReturnType; | 
|  | }; | 
|  | template <typename SPQRType, typename Derived> struct traits<SPQR_QProduct<SPQRType, Derived> > | 
|  | { | 
|  | typedef typename Derived::PlainObject ReturnType; | 
|  | }; | 
|  | } // End namespace internal | 
|  |  | 
|  | /** | 
|  | * \ingroup SPQRSupport_Module | 
|  | * \class SPQR | 
|  | * \brief Sparse QR factorization based on SuiteSparseQR library | 
|  | * | 
|  | * This class is used to perform a multithreaded and multifrontal rank-revealing QR decomposition | 
|  | * of sparse matrices. The result is then used to solve linear leasts_square systems. | 
|  | * Clearly, a QR factorization is returned such that A*P = Q*R where : | 
|  | * | 
|  | * P is the column permutation. Use colsPermutation() to get it. | 
|  | * | 
|  | * Q is the orthogonal matrix represented as Householder reflectors. | 
|  | * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose. | 
|  | * You can then apply it to a vector. | 
|  | * | 
|  | * R is the sparse triangular factor. Use matrixQR() to get it as SparseMatrix. | 
|  | * NOTE : The Index type of R is always SuiteSparse_long. You can get it with SPQR::Index | 
|  | * | 
|  | * \tparam MatrixType_ The type of the sparse matrix A, must be a column-major SparseMatrix<> | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * | 
|  | */ | 
|  | template<typename MatrixType_> | 
|  | class SPQR : public SparseSolverBase<SPQR<MatrixType_> > | 
|  | { | 
|  | protected: | 
|  | typedef SparseSolverBase<SPQR<MatrixType_> > Base; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | typedef typename MatrixType_::Scalar Scalar; | 
|  | typedef typename MatrixType_::RealScalar RealScalar; | 
|  | typedef SuiteSparse_long StorageIndex ; | 
|  | typedef SparseMatrix<Scalar, ColMajor, StorageIndex> MatrixType; | 
|  | typedef Map<PermutationMatrix<Dynamic, Dynamic, StorageIndex> > PermutationType; | 
|  | enum { | 
|  | ColsAtCompileTime = Dynamic, | 
|  | MaxColsAtCompileTime = Dynamic | 
|  | }; | 
|  | public: | 
|  | SPQR() | 
|  | : m_analysisIsOk(false), | 
|  | m_factorizationIsOk(false), | 
|  | m_isRUpToDate(false), | 
|  | m_ordering(SPQR_ORDERING_DEFAULT), | 
|  | m_allow_tol(SPQR_DEFAULT_TOL), | 
|  | m_tolerance (NumTraits<Scalar>::epsilon()), | 
|  | m_cR(0), | 
|  | m_E(0), | 
|  | m_H(0), | 
|  | m_HPinv(0), | 
|  | m_HTau(0), | 
|  | m_useDefaultThreshold(true) | 
|  | { | 
|  | cholmod_l_start(&m_cc); | 
|  | } | 
|  |  | 
|  | explicit SPQR(const MatrixType_& matrix) | 
|  | : m_analysisIsOk(false), | 
|  | m_factorizationIsOk(false), | 
|  | m_isRUpToDate(false), | 
|  | m_ordering(SPQR_ORDERING_DEFAULT), | 
|  | m_allow_tol(SPQR_DEFAULT_TOL), | 
|  | m_tolerance (NumTraits<Scalar>::epsilon()), | 
|  | m_cR(0), | 
|  | m_E(0), | 
|  | m_H(0), | 
|  | m_HPinv(0), | 
|  | m_HTau(0), | 
|  | m_useDefaultThreshold(true) | 
|  | { | 
|  | cholmod_l_start(&m_cc); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~SPQR() | 
|  | { | 
|  | SPQR_free(); | 
|  | cholmod_l_finish(&m_cc); | 
|  | } | 
|  | void SPQR_free() | 
|  | { | 
|  | cholmod_l_free_sparse(&m_H, &m_cc); | 
|  | cholmod_l_free_sparse(&m_cR, &m_cc); | 
|  | cholmod_l_free_dense(&m_HTau, &m_cc); | 
|  | std::free(m_E); | 
|  | std::free(m_HPinv); | 
|  | } | 
|  |  | 
|  | void compute(const MatrixType_& matrix) | 
|  | { | 
|  | if(m_isInitialized) SPQR_free(); | 
|  |  | 
|  | MatrixType mat(matrix); | 
|  |  | 
|  | /* Compute the default threshold as in MatLab, see: | 
|  | * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing | 
|  | * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3 | 
|  | */ | 
|  | RealScalar pivotThreshold = m_tolerance; | 
|  | if(m_useDefaultThreshold) | 
|  | { | 
|  | RealScalar max2Norm = 0.0; | 
|  | for (int j = 0; j < mat.cols(); j++) max2Norm = numext::maxi(max2Norm, mat.col(j).norm()); | 
|  | if(max2Norm==RealScalar(0)) | 
|  | max2Norm = RealScalar(1); | 
|  | pivotThreshold = 20 * (mat.rows() + mat.cols()) * max2Norm * NumTraits<RealScalar>::epsilon(); | 
|  | } | 
|  | cholmod_sparse A; | 
|  | A = viewAsCholmod(mat); | 
|  | m_rows = matrix.rows(); | 
|  | Index col = matrix.cols(); | 
|  | m_rank = SuiteSparseQR<Scalar>(m_ordering, pivotThreshold, col, &A, | 
|  | &m_cR, &m_E, &m_H, &m_HPinv, &m_HTau, &m_cc); | 
|  |  | 
|  | if (!m_cR) | 
|  | { | 
|  | m_info = NumericalIssue; | 
|  | m_isInitialized = false; | 
|  | return; | 
|  | } | 
|  | m_info = Success; | 
|  | m_isInitialized = true; | 
|  | m_isRUpToDate = false; | 
|  | } | 
|  | /** | 
|  | * Get the number of rows of the input matrix and the Q matrix | 
|  | */ | 
|  | inline Index rows() const {return m_rows; } | 
|  |  | 
|  | /** | 
|  | * Get the number of columns of the input matrix. | 
|  | */ | 
|  | inline Index cols() const { return m_cR->ncol; } | 
|  |  | 
|  | template<typename Rhs, typename Dest> | 
|  | void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const | 
|  | { | 
|  | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); | 
|  | eigen_assert(b.cols()==1 && "This method is for vectors only"); | 
|  |  | 
|  | //Compute Q^T * b | 
|  | typename Dest::PlainObject y, y2; | 
|  | y = matrixQ().transpose() * b; | 
|  |  | 
|  | // Solves with the triangular matrix R | 
|  | Index rk = this->rank(); | 
|  | y2 = y; | 
|  | y.resize((std::max)(cols(),Index(y.rows())),y.cols()); | 
|  | y.topRows(rk) = this->matrixR().topLeftCorner(rk, rk).template triangularView<Upper>().solve(y2.topRows(rk)); | 
|  |  | 
|  | // Apply the column permutation | 
|  | // colsPermutation() performs a copy of the permutation, | 
|  | // so let's apply it manually: | 
|  | for(Index i = 0; i < rk; ++i) dest.row(m_E[i]) = y.row(i); | 
|  | for(Index i = rk; i < cols(); ++i) dest.row(m_E[i]).setZero(); | 
|  |  | 
|  | //       y.bottomRows(y.rows()-rk).setZero(); | 
|  | //       dest = colsPermutation() * y.topRows(cols()); | 
|  |  | 
|  | m_info = Success; | 
|  | } | 
|  |  | 
|  | /** \returns the sparse triangular factor R. It is a sparse matrix | 
|  | */ | 
|  | const MatrixType matrixR() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && " The QR factorization should be computed first, call compute()"); | 
|  | if(!m_isRUpToDate) { | 
|  | m_R = viewAsEigen<Scalar,ColMajor, typename MatrixType::StorageIndex>(*m_cR); | 
|  | m_isRUpToDate = true; | 
|  | } | 
|  | return m_R; | 
|  | } | 
|  | /// Get an expression of the matrix Q | 
|  | SPQRMatrixQReturnType<SPQR> matrixQ() const | 
|  | { | 
|  | return SPQRMatrixQReturnType<SPQR>(*this); | 
|  | } | 
|  | /// Get the permutation that was applied to columns of A | 
|  | PermutationType colsPermutation() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return PermutationType(m_E, m_cR->ncol); | 
|  | } | 
|  | /** | 
|  | * Gets the rank of the matrix. | 
|  | * It should be equal to matrixQR().cols if the matrix is full-rank | 
|  | */ | 
|  | Index rank() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_cc.SPQR_istat[4]; | 
|  | } | 
|  | /// Set the fill-reducing ordering method to be used | 
|  | void setSPQROrdering(int ord) { m_ordering = ord;} | 
|  | /// Set the tolerance tol to treat columns with 2-norm < =tol as zero | 
|  | void setPivotThreshold(const RealScalar& tol) | 
|  | { | 
|  | m_useDefaultThreshold = false; | 
|  | m_tolerance = tol; | 
|  | } | 
|  |  | 
|  | /** \returns a pointer to the SPQR workspace */ | 
|  | cholmod_common *cholmodCommon() const { return &m_cc; } | 
|  |  | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the sparse QR can not be computed | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  | protected: | 
|  | bool m_analysisIsOk; | 
|  | bool m_factorizationIsOk; | 
|  | mutable bool m_isRUpToDate; | 
|  | mutable ComputationInfo m_info; | 
|  | int m_ordering; // Ordering method to use, see SPQR's manual | 
|  | int m_allow_tol; // Allow to use some tolerance during numerical factorization. | 
|  | RealScalar m_tolerance; // treat columns with 2-norm below this tolerance as zero | 
|  | mutable cholmod_sparse *m_cR; // The sparse R factor in cholmod format | 
|  | mutable MatrixType m_R; // The sparse matrix R in Eigen format | 
|  | mutable StorageIndex *m_E; // The permutation applied to columns | 
|  | mutable cholmod_sparse *m_H;  //The householder vectors | 
|  | mutable StorageIndex *m_HPinv; // The row permutation of H | 
|  | mutable cholmod_dense *m_HTau; // The Householder coefficients | 
|  | mutable Index m_rank; // The rank of the matrix | 
|  | mutable cholmod_common m_cc; // Workspace and parameters | 
|  | bool m_useDefaultThreshold;     // Use default threshold | 
|  | Index m_rows; | 
|  | template<typename ,typename > friend struct SPQR_QProduct; | 
|  | }; | 
|  |  | 
|  | template <typename SPQRType, typename Derived> | 
|  | struct SPQR_QProduct : ReturnByValue<SPQR_QProduct<SPQRType,Derived> > | 
|  | { | 
|  | typedef typename SPQRType::Scalar Scalar; | 
|  | typedef typename SPQRType::StorageIndex StorageIndex; | 
|  | //Define the constructor to get reference to argument types | 
|  | SPQR_QProduct(const SPQRType& spqr, const Derived& other, bool transpose) : m_spqr(spqr),m_other(other),m_transpose(transpose) {} | 
|  |  | 
|  | inline Index rows() const { return m_transpose ? m_spqr.rows() : m_spqr.cols(); } | 
|  | inline Index cols() const { return m_other.cols(); } | 
|  | // Assign to a vector | 
|  | template<typename ResType> | 
|  | void evalTo(ResType& res) const | 
|  | { | 
|  | cholmod_dense y_cd; | 
|  | cholmod_dense *x_cd; | 
|  | int method = m_transpose ? SPQR_QTX : SPQR_QX; | 
|  | cholmod_common *cc = m_spqr.cholmodCommon(); | 
|  | y_cd = viewAsCholmod(m_other.const_cast_derived()); | 
|  | x_cd = SuiteSparseQR_qmult<Scalar>(method, m_spqr.m_H, m_spqr.m_HTau, m_spqr.m_HPinv, &y_cd, cc); | 
|  | res = Matrix<Scalar,ResType::RowsAtCompileTime,ResType::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x), x_cd->nrow, x_cd->ncol); | 
|  | cholmod_l_free_dense(&x_cd, cc); | 
|  | } | 
|  | const SPQRType& m_spqr; | 
|  | const Derived& m_other; | 
|  | bool m_transpose; | 
|  |  | 
|  | }; | 
|  | template<typename SPQRType> | 
|  | struct SPQRMatrixQReturnType{ | 
|  |  | 
|  | SPQRMatrixQReturnType(const SPQRType& spqr) : m_spqr(spqr) {} | 
|  | template<typename Derived> | 
|  | SPQR_QProduct<SPQRType, Derived> operator*(const MatrixBase<Derived>& other) | 
|  | { | 
|  | return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(),false); | 
|  | } | 
|  | SPQRMatrixQTransposeReturnType<SPQRType> adjoint() const | 
|  | { | 
|  | return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); | 
|  | } | 
|  | // To use for operations with the transpose of Q | 
|  | SPQRMatrixQTransposeReturnType<SPQRType> transpose() const | 
|  | { | 
|  | return SPQRMatrixQTransposeReturnType<SPQRType>(m_spqr); | 
|  | } | 
|  | const SPQRType& m_spqr; | 
|  | }; | 
|  |  | 
|  | template<typename SPQRType> | 
|  | struct SPQRMatrixQTransposeReturnType{ | 
|  | SPQRMatrixQTransposeReturnType(const SPQRType& spqr) : m_spqr(spqr) {} | 
|  | template<typename Derived> | 
|  | SPQR_QProduct<SPQRType,Derived> operator*(const MatrixBase<Derived>& other) | 
|  | { | 
|  | return SPQR_QProduct<SPQRType,Derived>(m_spqr,other.derived(), true); | 
|  | } | 
|  | const SPQRType& m_spqr; | 
|  | }; | 
|  |  | 
|  | }// End namespace Eigen | 
|  | #endif |