|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_JACOBISVD_H | 
|  | #define EIGEN_JACOBISVD_H | 
|  |  | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | // forward declaration (needed by ICC) | 
|  | // the empty body is required by MSVC | 
|  | template<typename MatrixType, int QRPreconditioner, | 
|  | bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> | 
|  | struct svd_precondition_2x2_block_to_be_real {}; | 
|  |  | 
|  | /*** QR preconditioners (R-SVD) | 
|  | *** | 
|  | *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. | 
|  | *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for | 
|  | *** JacobiSVD which by itself is only able to work on square matrices. | 
|  | ***/ | 
|  |  | 
|  | enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner, int Case> | 
|  | struct qr_preconditioner_should_do_anything | 
|  | { | 
|  | enum { a = MatrixType::RowsAtCompileTime != Dynamic && | 
|  | MatrixType::ColsAtCompileTime != Dynamic && | 
|  | MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, | 
|  | b = MatrixType::RowsAtCompileTime != Dynamic && | 
|  | MatrixType::ColsAtCompileTime != Dynamic && | 
|  | MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, | 
|  | ret = !( (QRPreconditioner == NoQRPreconditioner) || | 
|  | (Case == PreconditionIfMoreColsThanRows && bool(a)) || | 
|  | (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner, int Case, | 
|  | bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret | 
|  | > struct qr_preconditioner_impl {}; | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner, int Case> | 
|  | class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> | 
|  | { | 
|  | public: | 
|  | void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} | 
|  | bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /*** preconditioner using FullPivHouseholderQR ***/ | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> | 
|  | { | 
|  | public: | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | enum | 
|  | { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime | 
|  | }; | 
|  | typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; | 
|  |  | 
|  | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) | 
|  | { | 
|  | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) | 
|  | { | 
|  | m_qr.~QRType(); | 
|  | ::new (&m_qr) QRType(svd.rows(), svd.cols()); | 
|  | } | 
|  | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); | 
|  | } | 
|  |  | 
|  | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) | 
|  | { | 
|  | if(matrix.rows() > matrix.cols()) | 
|  | { | 
|  | m_qr.compute(matrix); | 
|  | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); | 
|  | if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); | 
|  | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | private: | 
|  | typedef FullPivHouseholderQR<MatrixType> QRType; | 
|  | QRType m_qr; | 
|  | WorkspaceType m_workspace; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> | 
|  | { | 
|  | public: | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | enum | 
|  | { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | Options = MatrixType::Options | 
|  | }; | 
|  |  | 
|  | typedef typename internal::make_proper_matrix_type< | 
|  | Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime | 
|  | >::type TransposeTypeWithSameStorageOrder; | 
|  |  | 
|  | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) | 
|  | { | 
|  | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) | 
|  | { | 
|  | m_qr.~QRType(); | 
|  | ::new (&m_qr) QRType(svd.cols(), svd.rows()); | 
|  | } | 
|  | m_adjoint.resize(svd.cols(), svd.rows()); | 
|  | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); | 
|  | } | 
|  |  | 
|  | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) | 
|  | { | 
|  | if(matrix.cols() > matrix.rows()) | 
|  | { | 
|  | m_adjoint = matrix.adjoint(); | 
|  | m_qr.compute(m_adjoint); | 
|  | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); | 
|  | if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); | 
|  | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); | 
|  | return true; | 
|  | } | 
|  | else return false; | 
|  | } | 
|  | private: | 
|  | typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; | 
|  | QRType m_qr; | 
|  | TransposeTypeWithSameStorageOrder m_adjoint; | 
|  | typename internal::plain_row_type<MatrixType>::type m_workspace; | 
|  | }; | 
|  |  | 
|  | /*** preconditioner using ColPivHouseholderQR ***/ | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> | 
|  | { | 
|  | public: | 
|  | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) | 
|  | { | 
|  | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) | 
|  | { | 
|  | m_qr.~QRType(); | 
|  | ::new (&m_qr) QRType(svd.rows(), svd.cols()); | 
|  | } | 
|  | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); | 
|  | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); | 
|  | } | 
|  |  | 
|  | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) | 
|  | { | 
|  | if(matrix.rows() > matrix.cols()) | 
|  | { | 
|  | m_qr.compute(matrix); | 
|  | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); | 
|  | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); | 
|  | else if(svd.m_computeThinU) | 
|  | { | 
|  | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); | 
|  | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); | 
|  | } | 
|  | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef ColPivHouseholderQR<MatrixType> QRType; | 
|  | QRType m_qr; | 
|  | typename internal::plain_col_type<MatrixType>::type m_workspace; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> | 
|  | { | 
|  | public: | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | enum | 
|  | { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | Options = MatrixType::Options | 
|  | }; | 
|  |  | 
|  | typedef typename internal::make_proper_matrix_type< | 
|  | Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime | 
|  | >::type TransposeTypeWithSameStorageOrder; | 
|  |  | 
|  | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) | 
|  | { | 
|  | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) | 
|  | { | 
|  | m_qr.~QRType(); | 
|  | ::new (&m_qr) QRType(svd.cols(), svd.rows()); | 
|  | } | 
|  | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); | 
|  | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); | 
|  | m_adjoint.resize(svd.cols(), svd.rows()); | 
|  | } | 
|  |  | 
|  | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) | 
|  | { | 
|  | if(matrix.cols() > matrix.rows()) | 
|  | { | 
|  | m_adjoint = matrix.adjoint(); | 
|  | m_qr.compute(m_adjoint); | 
|  |  | 
|  | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); | 
|  | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); | 
|  | else if(svd.m_computeThinV) | 
|  | { | 
|  | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); | 
|  | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); | 
|  | } | 
|  | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); | 
|  | return true; | 
|  | } | 
|  | else return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; | 
|  | QRType m_qr; | 
|  | TransposeTypeWithSameStorageOrder m_adjoint; | 
|  | typename internal::plain_row_type<MatrixType>::type m_workspace; | 
|  | }; | 
|  |  | 
|  | /*** preconditioner using HouseholderQR ***/ | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> | 
|  | { | 
|  | public: | 
|  | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) | 
|  | { | 
|  | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) | 
|  | { | 
|  | m_qr.~QRType(); | 
|  | ::new (&m_qr) QRType(svd.rows(), svd.cols()); | 
|  | } | 
|  | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); | 
|  | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); | 
|  | } | 
|  |  | 
|  | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) | 
|  | { | 
|  | if(matrix.rows() > matrix.cols()) | 
|  | { | 
|  | m_qr.compute(matrix); | 
|  | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); | 
|  | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); | 
|  | else if(svd.m_computeThinU) | 
|  | { | 
|  | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); | 
|  | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); | 
|  | } | 
|  | if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | private: | 
|  | typedef HouseholderQR<MatrixType> QRType; | 
|  | QRType m_qr; | 
|  | typename internal::plain_col_type<MatrixType>::type m_workspace; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> | 
|  | { | 
|  | public: | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | enum | 
|  | { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | Options = MatrixType::Options | 
|  | }; | 
|  |  | 
|  | typedef typename internal::make_proper_matrix_type< | 
|  | Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime | 
|  | >::type TransposeTypeWithSameStorageOrder; | 
|  |  | 
|  | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) | 
|  | { | 
|  | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) | 
|  | { | 
|  | m_qr.~QRType(); | 
|  | ::new (&m_qr) QRType(svd.cols(), svd.rows()); | 
|  | } | 
|  | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); | 
|  | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); | 
|  | m_adjoint.resize(svd.cols(), svd.rows()); | 
|  | } | 
|  |  | 
|  | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) | 
|  | { | 
|  | if(matrix.cols() > matrix.rows()) | 
|  | { | 
|  | m_adjoint = matrix.adjoint(); | 
|  | m_qr.compute(m_adjoint); | 
|  |  | 
|  | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); | 
|  | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); | 
|  | else if(svd.m_computeThinV) | 
|  | { | 
|  | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); | 
|  | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); | 
|  | } | 
|  | if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); | 
|  | return true; | 
|  | } | 
|  | else return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; | 
|  | QRType m_qr; | 
|  | TransposeTypeWithSameStorageOrder m_adjoint; | 
|  | typename internal::plain_row_type<MatrixType>::type m_workspace; | 
|  | }; | 
|  |  | 
|  | /*** 2x2 SVD implementation | 
|  | *** | 
|  | *** JacobiSVD consists in performing a series of 2x2 SVD subproblems | 
|  | ***/ | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner> | 
|  | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> | 
|  | { | 
|  | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner> | 
|  | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> | 
|  | { | 
|  | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) | 
|  | { | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | Scalar z; | 
|  | JacobiRotation<Scalar> rot; | 
|  | RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); | 
|  |  | 
|  | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
|  | const RealScalar precision = NumTraits<Scalar>::epsilon(); | 
|  |  | 
|  | if(n==0) | 
|  | { | 
|  | // make sure first column is zero | 
|  | work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0); | 
|  |  | 
|  | if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) | 
|  | { | 
|  | // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n | 
|  | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); | 
|  | work_matrix.row(p) *= z; | 
|  | if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); | 
|  | } | 
|  | if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) | 
|  | { | 
|  | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); | 
|  | work_matrix.row(q) *= z; | 
|  | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); | 
|  | } | 
|  | // otherwise the second row is already zero, so we have nothing to do. | 
|  | } | 
|  | else | 
|  | { | 
|  | rot.c() = conj(work_matrix.coeff(p,p)) / n; | 
|  | rot.s() = work_matrix.coeff(q,p) / n; | 
|  | work_matrix.applyOnTheLeft(p,q,rot); | 
|  | if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); | 
|  | if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) | 
|  | { | 
|  | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); | 
|  | work_matrix.col(q) *= z; | 
|  | if(svd.computeV()) svd.m_matrixV.col(q) *= z; | 
|  | } | 
|  | if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) | 
|  | { | 
|  | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); | 
|  | work_matrix.row(q) *= z; | 
|  | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); | 
|  | } | 
|  | } | 
|  |  | 
|  | // update largest diagonal entry | 
|  | maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); | 
|  | // and check whether the 2x2 block is already diagonal | 
|  | RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); | 
|  | return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType_, int QRPreconditioner> | 
|  | struct traits<JacobiSVD<MatrixType_,QRPreconditioner> > | 
|  | : traits<MatrixType_> | 
|  | { | 
|  | typedef MatrixType_ MatrixType; | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \ingroup SVD_Module | 
|  | * | 
|  | * | 
|  | * \class JacobiSVD | 
|  | * | 
|  | * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition | 
|  | * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally | 
|  | *                        for the R-SVD step for non-square matrices. See discussion of possible values below. | 
|  | * | 
|  | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product | 
|  | *   \f[ A = U S V^* \f] | 
|  | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; | 
|  | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left | 
|  | * and right \em singular \em vectors of \a A respectively. | 
|  | * | 
|  | * Singular values are always sorted in decreasing order. | 
|  | * | 
|  | * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. | 
|  | * | 
|  | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the | 
|  | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual | 
|  | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, | 
|  | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. | 
|  | * | 
|  | * Here's an example demonstrating basic usage: | 
|  | * \include JacobiSVD_basic.cpp | 
|  | * Output: \verbinclude JacobiSVD_basic.out | 
|  | * | 
|  | * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than | 
|  | * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and | 
|  | * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. | 
|  | * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. | 
|  | * | 
|  | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to | 
|  | * terminate in finite (and reasonable) time. | 
|  | * | 
|  | * The possible values for QRPreconditioner are: | 
|  | * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. | 
|  | * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. | 
|  | *     Contrary to other QRs, it doesn't allow computing thin unitaries. | 
|  | * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. | 
|  | *     This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization | 
|  | *     is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive | 
|  | *     process is more reliable than the optimized bidiagonal SVD iterations. | 
|  | * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing | 
|  | *     JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in | 
|  | *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking | 
|  | *     if QR preconditioning is needed before applying it anyway. | 
|  | * | 
|  | * \sa MatrixBase::jacobiSvd() | 
|  | */ | 
|  | template<typename MatrixType_, int QRPreconditioner> class JacobiSVD | 
|  | : public SVDBase<JacobiSVD<MatrixType_,QRPreconditioner> > | 
|  | { | 
|  | typedef SVDBase<JacobiSVD> Base; | 
|  | public: | 
|  |  | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | DiagSizeAtCompileTime = internal::min_size_prefer_dynamic(RowsAtCompileTime,ColsAtCompileTime), | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
|  | MaxDiagSizeAtCompileTime = internal::min_size_prefer_fixed(MaxRowsAtCompileTime,MaxColsAtCompileTime), | 
|  | MatrixOptions = MatrixType::Options | 
|  | }; | 
|  |  | 
|  | typedef typename Base::MatrixUType MatrixUType; | 
|  | typedef typename Base::MatrixVType MatrixVType; | 
|  | typedef typename Base::SingularValuesType SingularValuesType; | 
|  |  | 
|  | typedef typename internal::plain_row_type<MatrixType>::type RowType; | 
|  | typedef typename internal::plain_col_type<MatrixType>::type ColType; | 
|  | typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, | 
|  | MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> | 
|  | WorkMatrixType; | 
|  |  | 
|  | /** \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via JacobiSVD::compute(const MatrixType&). | 
|  | */ | 
|  | JacobiSVD() | 
|  | {} | 
|  |  | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem size. | 
|  | * \sa JacobiSVD() | 
|  | */ | 
|  | JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) | 
|  | { | 
|  | allocate(rows, cols, computationOptions); | 
|  | } | 
|  |  | 
|  | /** \brief Constructor performing the decomposition of given matrix. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. | 
|  | *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, | 
|  | *                           #ComputeFullV, #ComputeThinV. | 
|  | * | 
|  | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not | 
|  | * available with the (non-default) FullPivHouseholderQR preconditioner. | 
|  | */ | 
|  | explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) | 
|  | { | 
|  | compute(matrix, computationOptions); | 
|  | } | 
|  |  | 
|  | /** \brief Method performing the decomposition of given matrix using custom options. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. | 
|  | *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, | 
|  | *                           #ComputeFullV, #ComputeThinV. | 
|  | * | 
|  | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not | 
|  | * available with the (non-default) FullPivHouseholderQR preconditioner. | 
|  | */ | 
|  | JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); | 
|  |  | 
|  | /** \brief Method performing the decomposition of given matrix using current options. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | * | 
|  | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). | 
|  | */ | 
|  | JacobiSVD& compute(const MatrixType& matrix) | 
|  | { | 
|  | return compute(matrix, m_computationOptions); | 
|  | } | 
|  |  | 
|  | using Base::computeU; | 
|  | using Base::computeV; | 
|  | using Base::rows; | 
|  | using Base::cols; | 
|  | using Base::rank; | 
|  |  | 
|  | private: | 
|  | void allocate(Index rows, Index cols, unsigned int computationOptions); | 
|  |  | 
|  | protected: | 
|  | using Base::m_matrixU; | 
|  | using Base::m_matrixV; | 
|  | using Base::m_singularValues; | 
|  | using Base::m_info; | 
|  | using Base::m_isInitialized; | 
|  | using Base::m_isAllocated; | 
|  | using Base::m_usePrescribedThreshold; | 
|  | using Base::m_computeFullU; | 
|  | using Base::m_computeThinU; | 
|  | using Base::m_computeFullV; | 
|  | using Base::m_computeThinV; | 
|  | using Base::m_computationOptions; | 
|  | using Base::m_nonzeroSingularValues; | 
|  | using Base::m_rows; | 
|  | using Base::m_cols; | 
|  | using Base::m_diagSize; | 
|  | using Base::m_prescribedThreshold; | 
|  | WorkMatrixType m_workMatrix; | 
|  |  | 
|  | template<typename MatrixType__, int QRPreconditioner_, bool IsComplex_> | 
|  | friend struct internal::svd_precondition_2x2_block_to_be_real; | 
|  | template<typename MatrixType__, int QRPreconditioner_, int Case_, bool DoAnything_> | 
|  | friend struct internal::qr_preconditioner_impl; | 
|  |  | 
|  | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; | 
|  | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; | 
|  | MatrixType m_scaledMatrix; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner> | 
|  | void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions) | 
|  | { | 
|  | eigen_assert(rows >= 0 && cols >= 0); | 
|  |  | 
|  | if (m_isAllocated && | 
|  | rows == m_rows && | 
|  | cols == m_cols && | 
|  | computationOptions == m_computationOptions) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | m_rows = rows; | 
|  | m_cols = cols; | 
|  | m_info = Success; | 
|  | m_isInitialized = false; | 
|  | m_isAllocated = true; | 
|  | m_computationOptions = computationOptions; | 
|  | m_computeFullU = (computationOptions & ComputeFullU) != 0; | 
|  | m_computeThinU = (computationOptions & ComputeThinU) != 0; | 
|  | m_computeFullV = (computationOptions & ComputeFullV) != 0; | 
|  | m_computeThinV = (computationOptions & ComputeThinV) != 0; | 
|  | eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U"); | 
|  | eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V"); | 
|  | eigen_assert(internal::check_implication(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && | 
|  | "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns."); | 
|  | if (QRPreconditioner == FullPivHouseholderQRPreconditioner) | 
|  | { | 
|  | eigen_assert(!(m_computeThinU || m_computeThinV) && | 
|  | "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " | 
|  | "Use the ColPivHouseholderQR preconditioner instead."); | 
|  | } | 
|  | m_diagSize = (std::min)(m_rows, m_cols); | 
|  | m_singularValues.resize(m_diagSize); | 
|  | if(RowsAtCompileTime==Dynamic) | 
|  | m_matrixU.resize(m_rows, m_computeFullU ? m_rows | 
|  | : m_computeThinU ? m_diagSize | 
|  | : 0); | 
|  | if(ColsAtCompileTime==Dynamic) | 
|  | m_matrixV.resize(m_cols, m_computeFullV ? m_cols | 
|  | : m_computeThinV ? m_diagSize | 
|  | : 0); | 
|  | m_workMatrix.resize(m_diagSize, m_diagSize); | 
|  |  | 
|  | if(m_cols>m_rows)   m_qr_precond_morecols.allocate(*this); | 
|  | if(m_rows>m_cols)   m_qr_precond_morerows.allocate(*this); | 
|  | if(m_rows!=m_cols)  m_scaledMatrix.resize(rows,cols); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType, int QRPreconditioner> | 
|  | JacobiSVD<MatrixType, QRPreconditioner>& | 
|  | JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) | 
|  | { | 
|  | using std::abs; | 
|  | allocate(matrix.rows(), matrix.cols(), computationOptions); | 
|  |  | 
|  | // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, | 
|  | // only worsening the precision of U and V as we accumulate more rotations | 
|  | const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); | 
|  |  | 
|  | // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) | 
|  | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
|  |  | 
|  | // Scaling factor to reduce over/under-flows | 
|  | RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); | 
|  | if (!(numext::isfinite)(scale)) { | 
|  | m_isInitialized = true; | 
|  | m_info = InvalidInput; | 
|  | return *this; | 
|  | } | 
|  | if(scale==RealScalar(0)) scale = RealScalar(1); | 
|  |  | 
|  | /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ | 
|  |  | 
|  | if(m_rows!=m_cols) | 
|  | { | 
|  | m_scaledMatrix = matrix / scale; | 
|  | m_qr_precond_morecols.run(*this, m_scaledMatrix); | 
|  | m_qr_precond_morerows.run(*this, m_scaledMatrix); | 
|  | } | 
|  | else | 
|  | { | 
|  | m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; | 
|  | if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); | 
|  | if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); | 
|  | if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); | 
|  | if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); | 
|  | } | 
|  |  | 
|  | /*** step 2. The main Jacobi SVD iteration. ***/ | 
|  | RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); | 
|  |  | 
|  | bool finished = false; | 
|  | while(!finished) | 
|  | { | 
|  | finished = true; | 
|  |  | 
|  | // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix | 
|  |  | 
|  | for(Index p = 1; p < m_diagSize; ++p) | 
|  | { | 
|  | for(Index q = 0; q < p; ++q) | 
|  | { | 
|  | // if this 2x2 sub-matrix is not diagonal already... | 
|  | // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't | 
|  | // keep us iterating forever. Similarly, small denormal numbers are considered zero. | 
|  | RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); | 
|  | if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) | 
|  | { | 
|  | finished = false; | 
|  | // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal | 
|  | // the complex to real operation returns true if the updated 2x2 block is not already diagonal | 
|  | if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry)) | 
|  | { | 
|  | JacobiRotation<RealScalar> j_left, j_right; | 
|  | internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); | 
|  |  | 
|  | // accumulate resulting Jacobi rotations | 
|  | m_workMatrix.applyOnTheLeft(p,q,j_left); | 
|  | if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); | 
|  |  | 
|  | m_workMatrix.applyOnTheRight(p,q,j_right); | 
|  | if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); | 
|  |  | 
|  | // keep track of the largest diagonal coefficient | 
|  | maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ | 
|  |  | 
|  | for(Index i = 0; i < m_diagSize; ++i) | 
|  | { | 
|  | // For a complex matrix, some diagonal coefficients might note have been | 
|  | // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part | 
|  | // of some diagonal entry might not be null. | 
|  | if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) | 
|  | { | 
|  | RealScalar a = abs(m_workMatrix.coeff(i,i)); | 
|  | m_singularValues.coeffRef(i) = abs(a); | 
|  | if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; | 
|  | } | 
|  | else | 
|  | { | 
|  | // m_workMatrix.coeff(i,i) is already real, no difficulty: | 
|  | RealScalar a = numext::real(m_workMatrix.coeff(i,i)); | 
|  | m_singularValues.coeffRef(i) = abs(a); | 
|  | if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | m_singularValues *= scale; | 
|  |  | 
|  | /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ | 
|  |  | 
|  | m_nonzeroSingularValues = m_diagSize; | 
|  | for(Index i = 0; i < m_diagSize; i++) | 
|  | { | 
|  | Index pos; | 
|  | RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos); | 
|  | if(maxRemainingSingularValue == RealScalar(0)) | 
|  | { | 
|  | m_nonzeroSingularValues = i; | 
|  | break; | 
|  | } | 
|  | if(pos) | 
|  | { | 
|  | pos += i; | 
|  | std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); | 
|  | if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); | 
|  | if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \svd_module | 
|  | * | 
|  | * \return the singular value decomposition of \c *this computed by two-sided | 
|  | * Jacobi transformations. | 
|  | * | 
|  | * \sa class JacobiSVD | 
|  | */ | 
|  | template<typename Derived> | 
|  | JacobiSVD<typename MatrixBase<Derived>::PlainObject> | 
|  | MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const | 
|  | { | 
|  | return JacobiSVD<PlainObject>(*this, computationOptions); | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_JACOBISVD_H |