| // Small bench routine for Eigen available in Eigen | 
 | // (C) Desire NUENTSA WAKAM, INRIA | 
 |  | 
 | #include <iostream> | 
 | #include <fstream> | 
 | #include <iomanip> | 
 | #include <Eigen/Jacobi> | 
 | #include <Eigen/Householder> | 
 | #include <Eigen/IterativeLinearSolvers> | 
 | #include <Eigen/LU> | 
 | #include <unsupported/Eigen/SparseExtra> | 
 | //#include <Eigen/SparseLU> | 
 | #include <Eigen/SuperLUSupport> | 
 | // #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h> | 
 | #include <bench/BenchTimer.h> | 
 | #include <unsupported/Eigen/IterativeSolvers> | 
 | using namespace std; | 
 | using namespace Eigen; | 
 |  | 
 | int main(int argc, char **args) | 
 | { | 
 |   SparseMatrix<double, ColMajor> A;  | 
 |   typedef SparseMatrix<double, ColMajor>::Index Index; | 
 |   typedef Matrix<double, Dynamic, Dynamic> DenseMatrix; | 
 |   typedef Matrix<double, Dynamic, 1> DenseRhs; | 
 |   VectorXd b, x, tmp; | 
 |   BenchTimer timer,totaltime;  | 
 |   //SparseLU<SparseMatrix<double, ColMajor> >   solver; | 
 | //   SuperLU<SparseMatrix<double, ColMajor> >   solver; | 
 |   ConjugateGradient<SparseMatrix<double, ColMajor>, Lower,IncompleteCholesky<double,Lower> > solver;  | 
 |   ifstream matrix_file;  | 
 |   string line; | 
 |   int  n; | 
 |   // Set parameters | 
 | //   solver.iparm(IPARM_THREAD_NBR) = 4; | 
 |   /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ | 
 |   if (argc < 2) assert(false && "please, give the matrix market file "); | 
 |    | 
 |   timer.start(); | 
 |   totaltime.start(); | 
 |   loadMarket(A, args[1]); | 
 |   cout << "End charging matrix " << endl; | 
 |   bool iscomplex=false, isvector=false; | 
 |   int sym; | 
 |   getMarketHeader(args[1], sym, iscomplex, isvector); | 
 |   if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; } | 
 |   if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;} | 
 |   if (sym != 0) { // symmetric matrices, only the lower part is stored | 
 |     SparseMatrix<double, ColMajor> temp;  | 
 |     temp = A; | 
 |     A = temp.selfadjointView<Lower>(); | 
 |   } | 
 |   timer.stop(); | 
 |    | 
 |   n = A.cols(); | 
 |   // ====== TESTS FOR SPARSE TUTORIAL ====== | 
 | //   cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl;  | 
 | //   SparseMatrix<double, RowMajor> mat1(A);  | 
 | //   SparseMatrix<double, RowMajor> mat2; | 
 | //   cout << " norm of A " << mat1.norm() << endl; ; | 
 | //   PermutationMatrix<Dynamic, Dynamic, int> perm(n); | 
 | //   perm.resize(n,1); | 
 | //   perm.indices().setLinSpaced(n, 0, n-1); | 
 | //   mat2 = perm * mat1; | 
 | //   mat.subrows(); | 
 | //   mat2.resize(n,n);  | 
 | //   mat2.reserve(10); | 
 | //   mat2.setConstant(); | 
 | //   std::cout<< "NORM " << mat1.squaredNorm()<< endl;   | 
 |  | 
 |   cout<< "Time to load the matrix " << timer.value() <<endl; | 
 |   /* Fill the right hand side */ | 
 |  | 
 | //   solver.set_restart(374); | 
 |   if (argc > 2) | 
 |     loadMarketVector(b, args[2]); | 
 |   else  | 
 |   { | 
 |     b.resize(n); | 
 |     tmp.resize(n); | 
 | //       tmp.setRandom(); | 
 |     for (int i = 0; i < n; i++) tmp(i) = i;  | 
 |     b = A * tmp ; | 
 |   } | 
 | //   Scaling<SparseMatrix<double> > scal;  | 
 | //   scal.computeRef(A); | 
 | //   b = scal.LeftScaling().cwiseProduct(b); | 
 |  | 
 |   /* Compute the factorization */ | 
 |   cout<< "Starting the factorization "<< endl;  | 
 |   timer.reset(); | 
 |   timer.start();  | 
 |   cout<< "Size of Input Matrix "<< b.size()<<"\n\n"; | 
 |   cout<< "Rows and columns "<< A.rows() <<" " <<A.cols() <<"\n"; | 
 |   solver.compute(A); | 
 | //   solver.analyzePattern(A); | 
 | //   solver.factorize(A); | 
 |   if (solver.info() != Success) { | 
 |     std::cout<< "The solver failed \n"; | 
 |     return -1;  | 
 |   } | 
 |   timer.stop();  | 
 |   float time_comp = timer.value();  | 
 |   cout <<" Compute Time " << time_comp<< endl;  | 
 |    | 
 |   timer.reset(); | 
 |   timer.start(); | 
 |   x = solver.solve(b); | 
 | //   x = scal.RightScaling().cwiseProduct(x); | 
 |   timer.stop(); | 
 |   float time_solve = timer.value();  | 
 |   cout<< " Time to solve " << time_solve << endl;  | 
 |   | 
 |   /* Check the accuracy */ | 
 |   VectorXd tmp2 = b - A*x; | 
 |   double tempNorm = tmp2.norm()/b.norm(); | 
 |   cout << "Relative norm of the computed solution : " << tempNorm <<"\n"; | 
 | //   cout << "Iterations : " << solver.iterations() << "\n";  | 
 |    | 
 |   totaltime.stop(); | 
 |   cout << "Total time " << totaltime.value() << "\n"; | 
 | //  std::cout<<x.transpose()<<"\n"; | 
 |    | 
 |   return 0; | 
 | } |