| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "quaternion_demo.h" | 
 | #include "icosphere.h" | 
 |  | 
 | #include <Eigen/Geometry> | 
 | #include <Eigen/QR> | 
 | #include <Eigen/LU> | 
 |  | 
 | #include <iostream> | 
 | #include <QEvent> | 
 | #include <QMouseEvent> | 
 | #include <QInputDialog> | 
 | #include <QGridLayout> | 
 | #include <QButtonGroup> | 
 | #include <QRadioButton> | 
 | #include <QDockWidget> | 
 | #include <QPushButton> | 
 | #include <QGroupBox> | 
 |  | 
 | using namespace Eigen; | 
 |  | 
 | class FancySpheres | 
 | { | 
 |   public: | 
 |     EIGEN_MAKE_ALIGNED_OPERATOR_NEW | 
 |      | 
 |     FancySpheres() | 
 |     { | 
 |       const int levels = 4; | 
 |       const float scale = 0.33; | 
 |       float radius = 100; | 
 |       std::vector<int> parents; | 
 |  | 
 |       // leval 0 | 
 |       mCenters.push_back(Vector3f::Zero()); | 
 |       parents.push_back(-1); | 
 |       mRadii.push_back(radius); | 
 |  | 
 |       // generate level 1 using icosphere vertices | 
 |       radius *= 0.45; | 
 |       { | 
 |         float dist = mRadii[0]*0.9; | 
 |         for (int i=0; i<12; ++i) | 
 |         { | 
 |           mCenters.push_back(mIcoSphere.vertices()[i] * dist); | 
 |           mRadii.push_back(radius); | 
 |           parents.push_back(0); | 
 |         } | 
 |       } | 
 |  | 
 |       static const float angles [10] = { | 
 |         0, 0, | 
 |         M_PI, 0.*M_PI, | 
 |         M_PI, 0.5*M_PI, | 
 |         M_PI, 1.*M_PI, | 
 |         M_PI, 1.5*M_PI | 
 |       }; | 
 |  | 
 |       // generate other levels | 
 |       int start = 1; | 
 |       for (int l=1; l<levels; l++) | 
 |       { | 
 |         radius *= scale; | 
 |         int end = mCenters.size(); | 
 |         for (int i=start; i<end; ++i) | 
 |         { | 
 |           Vector3f c = mCenters[i]; | 
 |           Vector3f ax0 = (c - mCenters[parents[i]]).normalized(); | 
 |           Vector3f ax1 = ax0.unitOrthogonal(); | 
 |           Quaternionf q; | 
 |           q.setFromTwoVectors(Vector3f::UnitZ(), ax0); | 
 |           Affine3f t = Translation3f(c) * q * Scaling(mRadii[i]+radius); | 
 |           for (int j=0; j<5; ++j) | 
 |           { | 
 |             Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0) | 
 |                                 * AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0) | 
 |                                 * (mRadii[i] + radius*0.8); | 
 |             mCenters.push_back(newC); | 
 |             mRadii.push_back(radius); | 
 |             parents.push_back(i); | 
 |           } | 
 |         } | 
 |         start = end; | 
 |       } | 
 |     } | 
 |  | 
 |     void draw() | 
 |     { | 
 |       int end = mCenters.size(); | 
 |       glEnable(GL_NORMALIZE); | 
 |       for (int i=0; i<end; ++i) | 
 |       { | 
 |         Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]); | 
 |         gpu.pushMatrix(GL_MODELVIEW); | 
 |         gpu.multMatrix(t.matrix(),GL_MODELVIEW); | 
 |         mIcoSphere.draw(2); | 
 |         gpu.popMatrix(GL_MODELVIEW); | 
 |       } | 
 |       glDisable(GL_NORMALIZE); | 
 |     } | 
 |   protected: | 
 |     std::vector<Vector3f> mCenters; | 
 |     std::vector<float> mRadii; | 
 |     IcoSphere mIcoSphere; | 
 | }; | 
 |  | 
 |  | 
 | // generic linear interpolation method | 
 | template<typename T> T lerp(float t, const T& a, const T& b) | 
 | { | 
 |   return a*(1-t) + b*t; | 
 | } | 
 |  | 
 | // quaternion slerp | 
 | template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b) | 
 | { return a.slerp(t,b); } | 
 |  | 
 | // linear interpolation of a frame using the type OrientationType | 
 | // to perform the interpolation of the orientations | 
 | template<typename OrientationType> | 
 | inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b) | 
 | { | 
 |   return Frame(lerp(alpha,a.position,b.position), | 
 |                Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation)))); | 
 | } | 
 |  | 
 | template<typename Scalar_> class EulerAngles | 
 | { | 
 | public: | 
 |   enum { Dim = 3 }; | 
 |   typedef Scalar_ Scalar; | 
 |   typedef Matrix<Scalar,3,3> Matrix3; | 
 |   typedef Matrix<Scalar,3,1> Vector3; | 
 |   typedef Quaternion<Scalar> QuaternionType; | 
 |  | 
 | protected: | 
 |  | 
 |   Vector3 m_angles; | 
 |  | 
 | public: | 
 |  | 
 |   EulerAngles() {} | 
 |   inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} | 
 |   inline EulerAngles(const QuaternionType& q) { *this = q; } | 
 |  | 
 |   const Vector3& coeffs() const { return m_angles; } | 
 |   Vector3& coeffs() { return m_angles; } | 
 |  | 
 |   EulerAngles& operator=(const QuaternionType& q) | 
 |   { | 
 |     Matrix3 m = q.toRotationMatrix(); | 
 |     return *this = m; | 
 |   } | 
 |  | 
 |   EulerAngles& operator=(const Matrix3& m) | 
 |   { | 
 |     // mat =  cy*cz          -cy*sz           sy | 
 |     //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx | 
 |     //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy | 
 |     m_angles.coeffRef(1) = std::asin(m.coeff(0,2)); | 
 |     m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2)); | 
 |     m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0)); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   Matrix3 toRotationMatrix(void) const | 
 |   { | 
 |     Vector3 c = m_angles.array().cos(); | 
 |     Vector3 s = m_angles.array().sin(); | 
 |     Matrix3 res; | 
 |     res <<  c.y()*c.z(),                    -c.y()*s.z(),                   s.y(), | 
 |             c.z()*s.x()*s.y()+c.x()*s.z(),  c.x()*c.z()-s.x()*s.y()*s.z(),  -c.y()*s.x(), | 
 |             -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(),  c.x()*c.y(); | 
 |     return res; | 
 |   } | 
 |  | 
 |   operator QuaternionType() { return QuaternionType(toRotationMatrix()); } | 
 | }; | 
 |  | 
 | // Euler angles slerp | 
 | template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b) | 
 | { | 
 |   EulerAngles<float> res; | 
 |   res.coeffs() = lerp(t, a.coeffs(), b.coeffs()); | 
 |   return res; | 
 | } | 
 |  | 
 |  | 
 | RenderingWidget::RenderingWidget() | 
 | { | 
 |   mAnimate = false; | 
 |   mCurrentTrackingMode = TM_NO_TRACK; | 
 |   mNavMode = NavTurnAround; | 
 |   mLerpMode = LerpQuaternion; | 
 |   mRotationMode = RotationStable; | 
 |   mTrackball.setCamera(&mCamera); | 
 |  | 
 |   // required to capture key press events | 
 |   setFocusPolicy(Qt::ClickFocus); | 
 | } | 
 |  | 
 | void RenderingWidget::grabFrame(void) | 
 | { | 
 |     // ask user for a time | 
 |     bool ok = false; | 
 |     double t = 0; | 
 |     if (!m_timeline.empty()) | 
 |       t = (--m_timeline.end())->first + 1.; | 
 |     t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ", | 
 |       t, 0, 1e3, 1, &ok); | 
 |     if (ok) | 
 |     { | 
 |       Frame aux; | 
 |       aux.orientation = mCamera.viewMatrix().linear(); | 
 |       aux.position = mCamera.viewMatrix().translation(); | 
 |       m_timeline[t] = aux; | 
 |     } | 
 | } | 
 |  | 
 | void RenderingWidget::drawScene() | 
 | { | 
 |   static FancySpheres sFancySpheres; | 
 |   float length = 50; | 
 |   gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1)); | 
 |   gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1)); | 
 |   gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1)); | 
 |  | 
 |   // draw the fractal object | 
 |   float sqrt3 = std::sqrt(3.); | 
 |   glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data()); | 
 |   glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data()); | 
 |   glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data()); | 
 |   glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data()); | 
 |  | 
 |   glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data()); | 
 |   glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data()); | 
 |   glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data()); | 
 |   glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data()); | 
 |  | 
 |   glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data()); | 
 |   glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data()); | 
 |   glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data()); | 
 |   glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64); | 
 |  | 
 |   glEnable(GL_LIGHTING); | 
 |   glEnable(GL_LIGHT0); | 
 |   glEnable(GL_LIGHT1); | 
 |  | 
 |   sFancySpheres.draw(); | 
 |   glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data()); | 
 |   glNormalPointer(GL_FLOAT, 0, mNormals[0].data()); | 
 |   glEnableClientState(GL_VERTEX_ARRAY); | 
 |   glEnableClientState(GL_NORMAL_ARRAY); | 
 |   glDrawArrays(GL_TRIANGLES, 0, mVertices.size()); | 
 |   glDisableClientState(GL_VERTEX_ARRAY); | 
 |   glDisableClientState(GL_NORMAL_ARRAY); | 
 |  | 
 |   glDisable(GL_LIGHTING); | 
 | } | 
 |  | 
 | void RenderingWidget::animate() | 
 | { | 
 |   m_alpha += double(m_timer.interval()) * 1e-3; | 
 |  | 
 |   TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha); | 
 |   TimeLine::const_iterator lo = hi; | 
 |   --lo; | 
 |  | 
 |   Frame currentFrame; | 
 |  | 
 |   if(hi==m_timeline.end()) | 
 |   { | 
 |     // end | 
 |     currentFrame = lo->second; | 
 |     stopAnimation(); | 
 |   } | 
 |   else if(hi==m_timeline.begin()) | 
 |   { | 
 |     // start | 
 |     currentFrame = hi->second; | 
 |   } | 
 |   else | 
 |   { | 
 |     float s = (m_alpha - lo->first)/(hi->first - lo->first); | 
 |     if (mLerpMode==LerpEulerAngles) | 
 |       currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second); | 
 |     else if (mLerpMode==LerpQuaternion) | 
 |       currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second); | 
 |     else | 
 |     { | 
 |       std::cerr << "Invalid rotation interpolation mode (abort)\n"; | 
 |       exit(2); | 
 |     } | 
 |     currentFrame.orientation.coeffs().normalize(); | 
 |   } | 
 |  | 
 |   currentFrame.orientation = currentFrame.orientation.inverse(); | 
 |   currentFrame.position = - (currentFrame.orientation * currentFrame.position); | 
 |   mCamera.setFrame(currentFrame); | 
 |  | 
 |   updateGL(); | 
 | } | 
 |  | 
 | void RenderingWidget::keyPressEvent(QKeyEvent * e) | 
 | { | 
 |     switch(e->key()) | 
 |     { | 
 |       case Qt::Key_Up: | 
 |         mCamera.zoom(2); | 
 |         break; | 
 |       case Qt::Key_Down: | 
 |         mCamera.zoom(-2); | 
 |         break; | 
 |       // add a frame | 
 |       case Qt::Key_G: | 
 |         grabFrame(); | 
 |         break; | 
 |       // clear the time line | 
 |       case Qt::Key_C: | 
 |         m_timeline.clear(); | 
 |         break; | 
 |       // move the camera to initial pos | 
 |       case Qt::Key_R: | 
 |         resetCamera(); | 
 |         break; | 
 |       // start/stop the animation | 
 |       case Qt::Key_A: | 
 |         if (mAnimate) | 
 |         { | 
 |           stopAnimation(); | 
 |         } | 
 |         else | 
 |         { | 
 |           m_alpha = 0; | 
 |           connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | 
 |           m_timer.start(1000/30); | 
 |           mAnimate = true; | 
 |         } | 
 |         break; | 
 |       default: | 
 |         break; | 
 |     } | 
 |  | 
 |     updateGL(); | 
 | } | 
 |  | 
 | void RenderingWidget::stopAnimation() | 
 | { | 
 |   disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | 
 |   m_timer.stop(); | 
 |   mAnimate = false; | 
 |   m_alpha = 0; | 
 | } | 
 |  | 
 | void RenderingWidget::mousePressEvent(QMouseEvent* e) | 
 | { | 
 |   mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); | 
 |   bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier); | 
 |   switch(e->button()) | 
 |   { | 
 |     case Qt::LeftButton: | 
 |       if(fly) | 
 |       { | 
 |         mCurrentTrackingMode = TM_LOCAL_ROTATE; | 
 |         mTrackball.start(Trackball::Local); | 
 |       } | 
 |       else | 
 |       { | 
 |         mCurrentTrackingMode = TM_ROTATE_AROUND; | 
 |         mTrackball.start(Trackball::Around); | 
 |       } | 
 |       mTrackball.track(mMouseCoords); | 
 |       break; | 
 |     case Qt::MidButton: | 
 |       if(fly) | 
 |         mCurrentTrackingMode = TM_FLY_Z; | 
 |       else | 
 |         mCurrentTrackingMode = TM_ZOOM; | 
 |       break; | 
 |     case Qt::RightButton: | 
 |         mCurrentTrackingMode = TM_FLY_PAN; | 
 |       break; | 
 |     default: | 
 |       break; | 
 |   } | 
 | } | 
 | void RenderingWidget::mouseReleaseEvent(QMouseEvent*) | 
 | { | 
 |     mCurrentTrackingMode = TM_NO_TRACK; | 
 |     updateGL(); | 
 | } | 
 |  | 
 | void RenderingWidget::mouseMoveEvent(QMouseEvent* e) | 
 | { | 
 |     // tracking | 
 |     if(mCurrentTrackingMode != TM_NO_TRACK) | 
 |     { | 
 |         float dx =   float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth()); | 
 |         float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight()); | 
 |  | 
 |         // speedup the transformations | 
 |         if(e->modifiers() & Qt::ShiftModifier) | 
 |         { | 
 |           dx *= 10.; | 
 |           dy *= 10.; | 
 |         } | 
 |  | 
 |         switch(mCurrentTrackingMode) | 
 |         { | 
 |           case TM_ROTATE_AROUND: | 
 |           case TM_LOCAL_ROTATE: | 
 |             if (mRotationMode==RotationStable) | 
 |             { | 
 |               // use the stable trackball implementation mapping | 
 |               // the 2D coordinates to 3D points on a sphere. | 
 |               mTrackball.track(Vector2i(e->pos().x(), e->pos().y())); | 
 |             } | 
 |             else | 
 |             { | 
 |               // standard approach mapping the x and y displacements as rotations | 
 |               // around the camera's X and Y axes. | 
 |               Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY()) | 
 |                             * AngleAxisf(-dy*M_PI, Vector3f::UnitX()); | 
 |               if (mCurrentTrackingMode==TM_LOCAL_ROTATE) | 
 |                 mCamera.localRotate(q); | 
 |               else | 
 |                 mCamera.rotateAroundTarget(q); | 
 |             } | 
 |             break; | 
 |           case TM_ZOOM : | 
 |             mCamera.zoom(dy*100); | 
 |             break; | 
 |           case TM_FLY_Z : | 
 |             mCamera.localTranslate(Vector3f(0, 0, -dy*200)); | 
 |             break; | 
 |           case TM_FLY_PAN : | 
 |             mCamera.localTranslate(Vector3f(dx*200, dy*200, 0)); | 
 |             break; | 
 |           default: | 
 |             break; | 
 |         } | 
 |  | 
 |         updateGL(); | 
 |     } | 
 |  | 
 |     mMouseCoords = Vector2i(e->pos().x(), e->pos().y()); | 
 | } | 
 |  | 
 | void RenderingWidget::paintGL() | 
 | { | 
 |   glEnable(GL_DEPTH_TEST); | 
 |   glDisable(GL_CULL_FACE); | 
 |   glPolygonMode(GL_FRONT_AND_BACK,GL_FILL); | 
 |   glDisable(GL_COLOR_MATERIAL); | 
 |   glDisable(GL_BLEND); | 
 |   glDisable(GL_ALPHA_TEST); | 
 |   glDisable(GL_TEXTURE_1D); | 
 |   glDisable(GL_TEXTURE_2D); | 
 |   glDisable(GL_TEXTURE_3D); | 
 |  | 
 |   // Clear buffers | 
 |   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); | 
 |  | 
 |   mCamera.activateGL(); | 
 |  | 
 |   drawScene(); | 
 | } | 
 |  | 
 | void RenderingWidget::initializeGL() | 
 | { | 
 |   glClearColor(1., 1., 1., 0.); | 
 |   glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1); | 
 |   glDepthMask(GL_TRUE); | 
 |   glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); | 
 |  | 
 |   mCamera.setPosition(Vector3f(-200, -200, -200)); | 
 |   mCamera.setTarget(Vector3f(0, 0, 0)); | 
 |   mInitFrame.orientation = mCamera.orientation().inverse(); | 
 |   mInitFrame.position = mCamera.viewMatrix().translation(); | 
 | } | 
 |  | 
 | void RenderingWidget::resizeGL(int width, int height) | 
 | { | 
 |     mCamera.setViewport(width,height); | 
 | } | 
 |  | 
 | void RenderingWidget::setNavMode(int m) | 
 | { | 
 |   mNavMode = NavMode(m); | 
 | } | 
 |  | 
 | void RenderingWidget::setLerpMode(int m) | 
 | { | 
 |   mLerpMode = LerpMode(m); | 
 | } | 
 |  | 
 | void RenderingWidget::setRotationMode(int m) | 
 | { | 
 |   mRotationMode = RotationMode(m); | 
 | } | 
 |  | 
 | void RenderingWidget::resetCamera() | 
 | { | 
 |   if (mAnimate) | 
 |     stopAnimation(); | 
 |   m_timeline.clear(); | 
 |   Frame aux0 = mCamera.frame(); | 
 |   aux0.orientation = aux0.orientation.inverse(); | 
 |   aux0.position = mCamera.viewMatrix().translation(); | 
 |   m_timeline[0] = aux0; | 
 |  | 
 |   Vector3f currentTarget = mCamera.target(); | 
 |   mCamera.setTarget(Vector3f::Zero()); | 
 |  | 
 |   // compute the rotation duration to move the camera to the target | 
 |   Frame aux1 = mCamera.frame(); | 
 |   aux1.orientation = aux1.orientation.inverse(); | 
 |   aux1.position = mCamera.viewMatrix().translation(); | 
 |   float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9; | 
 |   if (duration<0.1) duration = 0.1; | 
 |  | 
 |   // put the camera at that time step: | 
 |   aux1 = aux0.lerp(duration/2,mInitFrame); | 
 |   // and make it look at the target again | 
 |   aux1.orientation = aux1.orientation.inverse(); | 
 |   aux1.position = - (aux1.orientation * aux1.position); | 
 |   mCamera.setFrame(aux1); | 
 |   mCamera.setTarget(Vector3f::Zero()); | 
 |  | 
 |   // add this camera keyframe | 
 |   aux1.orientation = aux1.orientation.inverse(); | 
 |   aux1.position = mCamera.viewMatrix().translation(); | 
 |   m_timeline[duration] = aux1; | 
 |  | 
 |   m_timeline[2] = mInitFrame; | 
 |   m_alpha = 0; | 
 |   animate(); | 
 |   connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate())); | 
 |   m_timer.start(1000/30); | 
 |   mAnimate = true; | 
 | } | 
 |  | 
 | QWidget* RenderingWidget::createNavigationControlWidget() | 
 | { | 
 |   QWidget* panel = new QWidget(); | 
 |   QVBoxLayout* layout = new QVBoxLayout(); | 
 |  | 
 |   { | 
 |     QPushButton* but = new QPushButton("reset"); | 
 |     but->setToolTip("move the camera to initial position (with animation)"); | 
 |     layout->addWidget(but); | 
 |     connect(but, SIGNAL(clicked()), this, SLOT(resetCamera())); | 
 |   } | 
 |   { | 
 |     // navigation mode | 
 |     QGroupBox* box = new QGroupBox("navigation mode"); | 
 |     QVBoxLayout* boxLayout = new QVBoxLayout; | 
 |     QButtonGroup* group = new QButtonGroup(panel); | 
 |     QRadioButton* but; | 
 |     but = new QRadioButton("turn around"); | 
 |     but->setToolTip("look around an object"); | 
 |     group->addButton(but, NavTurnAround); | 
 |     boxLayout->addWidget(but); | 
 |     but = new QRadioButton("fly"); | 
 |     but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)"); | 
 |     group->addButton(but, NavFly); | 
 |     boxLayout->addWidget(but); | 
 |     group->button(mNavMode)->setChecked(true); | 
 |     connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int))); | 
 |     box->setLayout(boxLayout); | 
 |     layout->addWidget(box); | 
 |   } | 
 |   { | 
 |     // track ball, rotation mode | 
 |     QGroupBox* box = new QGroupBox("rotation mode"); | 
 |     QVBoxLayout* boxLayout = new QVBoxLayout; | 
 |     QButtonGroup* group = new QButtonGroup(panel); | 
 |     QRadioButton* but; | 
 |     but = new QRadioButton("stable trackball"); | 
 |     group->addButton(but, RotationStable); | 
 |     boxLayout->addWidget(but); | 
 |     but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere"); | 
 |     but = new QRadioButton("standard rotation"); | 
 |     group->addButton(but, RotationStandard); | 
 |     boxLayout->addWidget(but); | 
 |     but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes"); | 
 |     group->button(mRotationMode)->setChecked(true); | 
 |     connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int))); | 
 |     box->setLayout(boxLayout); | 
 |     layout->addWidget(box); | 
 |   } | 
 |   { | 
 |     // interpolation mode | 
 |     QGroupBox* box = new QGroupBox("spherical interpolation"); | 
 |     QVBoxLayout* boxLayout = new QVBoxLayout; | 
 |     QButtonGroup* group = new QButtonGroup(panel); | 
 |     QRadioButton* but; | 
 |     but = new QRadioButton("quaternion slerp"); | 
 |     group->addButton(but, LerpQuaternion); | 
 |     boxLayout->addWidget(but); | 
 |     but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations"); | 
 |     but = new QRadioButton("euler angles"); | 
 |     group->addButton(but, LerpEulerAngles); | 
 |     boxLayout->addWidget(but); | 
 |     but->setToolTip("use Euler angles to interpolate orientations"); | 
 |     group->button(mNavMode)->setChecked(true); | 
 |     connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int))); | 
 |     box->setLayout(boxLayout); | 
 |     layout->addWidget(box); | 
 |   } | 
 |   layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding)); | 
 |   panel->setLayout(layout); | 
 |   return panel; | 
 | } | 
 |  | 
 | QuaternionDemo::QuaternionDemo() | 
 | { | 
 |   mRenderingWidget = new RenderingWidget(); | 
 |   setCentralWidget(mRenderingWidget); | 
 |  | 
 |   QDockWidget* panel = new QDockWidget("navigation", this); | 
 |   panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea)); | 
 |   addDockWidget(Qt::RightDockWidgetArea, panel); | 
 |   panel->setWidget(mRenderingWidget->createNavigationControlWidget()); | 
 | } | 
 |  | 
 | int main(int argc, char *argv[]) | 
 | { | 
 |   std::cout << "Navigation:\n"; | 
 |   std::cout << "  left button:           rotate around the target\n"; | 
 |   std::cout << "  middle button:         zoom\n"; | 
 |   std::cout << "  left button + ctrl     quake rotate (rotate around camera position)\n"; | 
 |   std::cout << "  middle button + ctrl   walk (progress along camera's z direction)\n"; | 
 |   std::cout << "  left button:           pan (translate in the XY camera's plane)\n\n"; | 
 |   std::cout << "R : move the camera to initial position\n"; | 
 |   std::cout << "A : start/stop animation\n"; | 
 |   std::cout << "C : clear the animation\n"; | 
 |   std::cout << "G : add a key frame\n"; | 
 |  | 
 |   QApplication app(argc, argv); | 
 |   QuaternionDemo demo; | 
 |   demo.resize(600,500); | 
 |   demo.show(); | 
 |   return app.exec(); | 
 | } | 
 |  | 
 | #include "quaternion_demo.moc" | 
 |  |