|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // workaround issue between gcc >= 4.7 and cuda 5.5 | 
|  | #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) | 
|  | #undef _GLIBCXX_ATOMIC_BUILTINS | 
|  | #undef _GLIBCXX_USE_INT128 | 
|  | #endif | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  |  | 
|  | #include "main.h" | 
|  | #include "gpu_common.h" | 
|  |  | 
|  | // Check that dense modules can be properly parsed by nvcc | 
|  | #include <Eigen/Dense> | 
|  |  | 
|  | // struct Foo{ | 
|  | //   EIGEN_DEVICE_FUNC | 
|  | //   void operator()(int i, const float* mats, float* vecs) const { | 
|  | //     using namespace Eigen; | 
|  | //   //   Matrix3f M(data); | 
|  | //   //   Vector3f x(data+9); | 
|  | //   //   Map<Vector3f>(data+9) = M.inverse() * x; | 
|  | //     Matrix3f M(mats+i/16); | 
|  | //     Vector3f x(vecs+i*3); | 
|  | //   //   using std::min; | 
|  | //   //   using std::sqrt; | 
|  | //     Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() *  x) / x.x(); | 
|  | //     //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); | 
|  | //   } | 
|  | // }; | 
|  |  | 
|  | template<typename T> | 
|  | struct coeff_wise { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T x1(in+i); | 
|  | T x2(in+i+1); | 
|  | T x3(in+i+2); | 
|  | Map<T> res(out+i*T::MaxSizeAtCompileTime); | 
|  |  | 
|  | res.array() += (in[0] * x1 + x2).array() * x3.array(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct complex_sqrt { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef typename T::Scalar ComplexType; | 
|  | typedef typename T::Scalar::value_type ValueType; | 
|  | const int num_special_inputs = 18; | 
|  |  | 
|  | if (i == 0) { | 
|  | const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN(); | 
|  | typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs; | 
|  | SpecialInputs special_in; | 
|  | special_in.setZero(); | 
|  | int idx = 0; | 
|  | special_in[idx++] = ComplexType(0, 0); | 
|  | special_in[idx++] = ComplexType(-0, 0); | 
|  | special_in[idx++] = ComplexType(0, -0); | 
|  | special_in[idx++] = ComplexType(-0, -0); | 
|  | // GCC's fallback sqrt implementation fails for inf inputs. | 
|  | // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if | 
|  | // clang includes the GCC header (which temporarily disables | 
|  | // _GLIBCXX_USE_C99_COMPLEX) | 
|  | #if !defined(_GLIBCXX_COMPLEX) || \ | 
|  | (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX)) | 
|  | const ValueType inf = std::numeric_limits<ValueType>::infinity(); | 
|  | special_in[idx++] = ComplexType(1.0, inf); | 
|  | special_in[idx++] = ComplexType(nan, inf); | 
|  | special_in[idx++] = ComplexType(1.0, -inf); | 
|  | special_in[idx++] = ComplexType(nan, -inf); | 
|  | special_in[idx++] = ComplexType(-inf, 1.0); | 
|  | special_in[idx++] = ComplexType(inf, 1.0); | 
|  | special_in[idx++] = ComplexType(-inf, -1.0); | 
|  | special_in[idx++] = ComplexType(inf, -1.0); | 
|  | special_in[idx++] = ComplexType(-inf, nan); | 
|  | special_in[idx++] = ComplexType(inf, nan); | 
|  | #endif | 
|  | special_in[idx++] = ComplexType(1.0, nan); | 
|  | special_in[idx++] = ComplexType(nan, 1.0); | 
|  | special_in[idx++] = ComplexType(nan, -1.0); | 
|  | special_in[idx++] = ComplexType(nan, nan); | 
|  |  | 
|  | Map<SpecialInputs> special_out(out); | 
|  | special_out = special_in.cwiseSqrt(); | 
|  | } | 
|  |  | 
|  | T x1(in + i); | 
|  | Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime); | 
|  | res = x1.cwiseSqrt(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct complex_operators { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef typename T::Scalar ComplexType; | 
|  | typedef typename T::Scalar::value_type ValueType; | 
|  | const int num_scalar_operators = 24; | 
|  | const int num_vector_operators = 23;  // no unary + operator. | 
|  | int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime); | 
|  |  | 
|  | // Scalar operators. | 
|  | const ComplexType a = in[i]; | 
|  | const ComplexType b = in[i + 1]; | 
|  |  | 
|  | out[out_idx++] = +a; | 
|  | out[out_idx++] = -a; | 
|  |  | 
|  | out[out_idx++] = a + b; | 
|  | out[out_idx++] = a + numext::real(b); | 
|  | out[out_idx++] = numext::real(a) + b; | 
|  | out[out_idx++] = a - b; | 
|  | out[out_idx++] = a - numext::real(b); | 
|  | out[out_idx++] = numext::real(a) - b; | 
|  | out[out_idx++] = a * b; | 
|  | out[out_idx++] = a * numext::real(b); | 
|  | out[out_idx++] = numext::real(a) * b; | 
|  | out[out_idx++] = a / b; | 
|  | out[out_idx++] = a / numext::real(b); | 
|  | out[out_idx++] = numext::real(a) / b; | 
|  |  | 
|  | #if !defined(EIGEN_COMP_MSVC) | 
|  | out[out_idx] = a; out[out_idx++] += b; | 
|  | out[out_idx] = a; out[out_idx++] -= b; | 
|  | out[out_idx] = a; out[out_idx++] *= b; | 
|  | out[out_idx] = a; out[out_idx++] /= b; | 
|  | #endif | 
|  |  | 
|  | const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); | 
|  | const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); | 
|  | out[out_idx++] = (a == b ? true_value : false_value); | 
|  | out[out_idx++] = (a == numext::real(b) ? true_value : false_value); | 
|  | out[out_idx++] = (numext::real(a) == b ? true_value : false_value); | 
|  | out[out_idx++] = (a != b ? true_value : false_value); | 
|  | out[out_idx++] = (a != numext::real(b) ? true_value : false_value); | 
|  | out[out_idx++] = (numext::real(a) != b ? true_value : false_value); | 
|  |  | 
|  | // Vector versions. | 
|  | T x1(in + i); | 
|  | T x2(in + i + 1); | 
|  | const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators; | 
|  | const int size = T::MaxSizeAtCompileTime; | 
|  | int block_idx = 0; | 
|  |  | 
|  | Map<VectorX<ComplexType>> res(out + out_idx, res_size); | 
|  | res.segment(block_idx, size) = -x1; | 
|  | block_idx += size; | 
|  |  | 
|  | res.segment(block_idx, size) = x1 + x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1 + x2.real(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real() + x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1 - x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1 - x2.real(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real() - x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() * x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() * x2.real().array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real().array() * x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() / x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.array() / x2.real().array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1.real().array() / x2.array(); | 
|  | block_idx += size; | 
|  |  | 
|  | #if !defined(EIGEN_COMP_MSVC) | 
|  | res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2; | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array(); | 
|  | block_idx += size; | 
|  | res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array(); | 
|  | block_idx += size; | 
|  | #endif | 
|  |  | 
|  | const T true_vector = T::Constant(true_value); | 
|  | const T false_vector = T::Constant(false_value); | 
|  | res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); | 
|  | block_idx += size; | 
|  | // Mixing types in equality comparison does not work. | 
|  | // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); | 
|  | // block_idx += size; | 
|  | // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector); | 
|  | // block_idx += size; | 
|  | res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); | 
|  | block_idx += size; | 
|  | // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); | 
|  | // block_idx += size; | 
|  | // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); | 
|  | // block_idx += size; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct replicate { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T x1(in+i); | 
|  | int step   = x1.size() * 4; | 
|  | int stride = 3 * step; | 
|  |  | 
|  | typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; | 
|  | MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); | 
|  | MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); | 
|  | MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct alloc_new_delete { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | int offset = 2*i*T::MaxSizeAtCompileTime; | 
|  | T* x = new T(in + offset); | 
|  | Eigen::Map<T> u(out + offset); | 
|  | u = *x; | 
|  | delete x; | 
|  |  | 
|  | offset += T::MaxSizeAtCompileTime; | 
|  | T* y = new T[1]; | 
|  | y[0] = T(in + offset); | 
|  | Eigen::Map<T> v(out + offset); | 
|  | v = y[0]; | 
|  | delete[] y; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct redux { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | int N = 10; | 
|  | T x1(in+i); | 
|  | out[i*N+0] = x1.minCoeff(); | 
|  | out[i*N+1] = x1.maxCoeff(); | 
|  | out[i*N+2] = x1.sum(); | 
|  | out[i*N+3] = x1.prod(); | 
|  | out[i*N+4] = x1.matrix().squaredNorm(); | 
|  | out[i*N+5] = x1.matrix().norm(); | 
|  | out[i*N+6] = x1.colwise().sum().maxCoeff(); | 
|  | out[i*N+7] = x1.rowwise().maxCoeff().sum(); | 
|  | out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T1, typename T2> | 
|  | struct prod_test { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; | 
|  | T1 x1(in+i); | 
|  | T2 x2(in+i+1); | 
|  | Map<T3> res(out+i*T3::MaxSizeAtCompileTime); | 
|  | res += in[i] * x1 * x2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T1, typename T2> | 
|  | struct diagonal { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T1 x1(in+i); | 
|  | Map<T2> res(out+i*T2::MaxSizeAtCompileTime); | 
|  | res += x1.diagonal(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct eigenvalues_direct { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; | 
|  | T M(in+i); | 
|  | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); | 
|  | T A = M*M.adjoint(); | 
|  | SelfAdjointEigenSolver<T> eig; | 
|  | eig.computeDirect(A); | 
|  | res = eig.eigenvalues(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct eigenvalues { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; | 
|  | T M(in+i); | 
|  | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); | 
|  | T A = M*M.adjoint(); | 
|  | SelfAdjointEigenSolver<T> eig; | 
|  | eig.compute(A); | 
|  | res = eig.eigenvalues(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct matrix_inverse { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | using namespace Eigen; | 
|  | T M(in+i); | 
|  | Map<T> res(out+i*T::MaxSizeAtCompileTime); | 
|  | res = M.inverse(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | struct numeric_limits_test { | 
|  | EIGEN_DEVICE_FUNC | 
|  | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const | 
|  | { | 
|  | EIGEN_UNUSED_VARIABLE(in) | 
|  | int out_idx = i * 5; | 
|  | out[out_idx++] = numext::numeric_limits<float>::epsilon(); | 
|  | out[out_idx++] = (numext::numeric_limits<float>::max)(); | 
|  | out[out_idx++] = (numext::numeric_limits<float>::min)(); | 
|  | out[out_idx++] = numext::numeric_limits<float>::infinity(); | 
|  | out[out_idx++] = numext::numeric_limits<float>::quiet_NaN(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Type1, typename Type2> | 
|  | bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only | 
|  | { | 
|  | if (a.rows() != b.rows()) { | 
|  | return false; | 
|  | } | 
|  | if (a.cols() != b.cols()) { | 
|  | return false; | 
|  | } | 
|  | for (Index r = 0; r < a.rows(); ++r) { | 
|  | for (Index c = 0; c < a.cols(); ++c) { | 
|  | if (a(r, c) != b(r, c) | 
|  | && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c))) | 
|  | && !test_isApprox(a(r, c), b(r, c))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template<typename Kernel, typename Input, typename Output> | 
|  | void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) | 
|  | { | 
|  | Output out_ref, out_gpu; | 
|  | #if !defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | out_ref = out_gpu = out; | 
|  | #else | 
|  | EIGEN_UNUSED_VARIABLE(in); | 
|  | EIGEN_UNUSED_VARIABLE(out); | 
|  | #endif | 
|  | run_on_cpu (ker, n, in,  out_ref); | 
|  | run_on_gpu(ker, n, in, out_gpu); | 
|  | #if !defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | verifyIsApproxWithInfsNans(out_ref, out_gpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(gpu_basic) | 
|  | { | 
|  | ei_test_init_gpu(); | 
|  |  | 
|  | int nthreads = 100; | 
|  | Eigen::VectorXf in, out; | 
|  | Eigen::VectorXcf cfin, cfout; | 
|  |  | 
|  | #if !defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | int data_size = nthreads * 512; | 
|  | in.setRandom(data_size); | 
|  | out.setConstant(data_size, -1); | 
|  | cfin.setRandom(data_size); | 
|  | cfout.setConstant(data_size, -1); | 
|  | #endif | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) ); | 
|  |  | 
|  | #if !defined(EIGEN_USE_HIP) | 
|  | // FIXME | 
|  | // These subtests result in a compile failure on the HIP platform | 
|  | // | 
|  | //  eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: | 
|  | //           base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type' | 
|  | //           (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) ); | 
|  |  | 
|  | // HIP does not support new/delete on device. | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out) ); | 
|  | #endif | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) ); | 
|  |  | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) ); | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) ); | 
|  |  | 
|  | // Test std::complex. | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout) ); | 
|  | CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) ); | 
|  |  | 
|  | // numeric_limits | 
|  | CALL_SUBTEST( test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out) ); | 
|  |  | 
|  | #if defined(__NVCC__) | 
|  | // FIXME | 
|  | // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) ); | 
|  | typedef Matrix<float,6,6> Matrix6f; | 
|  | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) ); | 
|  | #endif | 
|  | } |