| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/AutoDiff> | 
 |  | 
 | template<typename Scalar> | 
 | EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) | 
 | { | 
 |   using namespace std; | 
 | //   return x+std::sin(y); | 
 |   EIGEN_ASM_COMMENT("mybegin"); | 
 |   // pow(float, int) promotes to pow(double, double) | 
 |   return x*2 - 1 + static_cast<Scalar>(pow(1+x,2)) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - exp(Scalar(-0.5)*x*x+0); | 
 |   //return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; | 
 |   EIGEN_ASM_COMMENT("myend"); | 
 | } | 
 |  | 
 | template<typename Vector> | 
 | EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) | 
 | { | 
 |   typedef typename Vector::Scalar Scalar; | 
 |   return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); | 
 | } | 
 |  | 
 | template<typename Scalar_, int NX=Dynamic, int NY=Dynamic> | 
 | struct TestFunc1 | 
 | { | 
 |   typedef Scalar_ Scalar; | 
 |   enum { | 
 |     InputsAtCompileTime = NX, | 
 |     ValuesAtCompileTime = NY | 
 |   }; | 
 |   typedef Matrix<Scalar,InputsAtCompileTime,1> InputType; | 
 |   typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType; | 
 |   typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType; | 
 |  | 
 |   int m_inputs, m_values; | 
 |  | 
 |   TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
 |   TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} | 
 |  | 
 |   int inputs() const { return m_inputs; } | 
 |   int values() const { return m_values; } | 
 |  | 
 |   template<typename T> | 
 |   void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const | 
 |   { | 
 |     Matrix<T,ValuesAtCompileTime,1>& v = *_v; | 
 |  | 
 |     v[0] = 2 * x[0] * x[0] + x[0] * x[1]; | 
 |     v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; | 
 |     if(inputs()>2) | 
 |     { | 
 |       v[0] += 0.5 * x[2]; | 
 |       v[1] += x[2]; | 
 |     } | 
 |     if(values()>2) | 
 |     { | 
 |       v[2] = 3 * x[1] * x[0] * x[0]; | 
 |     } | 
 |     if (inputs()>2 && values()>2) | 
 |       v[2] *= x[2]; | 
 |   } | 
 |  | 
 |   void operator() (const InputType& x, ValueType* v, JacobianType* _j) const | 
 |   { | 
 |     (*this)(x, v); | 
 |  | 
 |     if(_j) | 
 |     { | 
 |       JacobianType& j = *_j; | 
 |  | 
 |       j(0,0) = 4 * x[0] + x[1]; | 
 |       j(1,0) = 3 * x[1]; | 
 |  | 
 |       j(0,1) = x[0]; | 
 |       j(1,1) = 3 * x[0] + 2 * 0.5 * x[1]; | 
 |  | 
 |       if (inputs()>2) | 
 |       { | 
 |         j(0,2) = 0.5; | 
 |         j(1,2) = 1; | 
 |       } | 
 |       if(values()>2) | 
 |       { | 
 |         j(2,0) = 3 * x[1] * 2 * x[0]; | 
 |         j(2,1) = 3 * x[0] * x[0]; | 
 |       } | 
 |       if (inputs()>2 && values()>2) | 
 |       { | 
 |         j(2,0) *= x[2]; | 
 |         j(2,1) *= x[2]; | 
 |  | 
 |         j(2,2) = 3 * x[1] * x[0] * x[0]; | 
 |         j(2,2) = 3 * x[1] * x[0] * x[0]; | 
 |       } | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | /* Test functor for the C++11 features. */ | 
 | template <typename Scalar> | 
 | struct integratorFunctor | 
 | { | 
 |     typedef Matrix<Scalar, 2, 1> InputType; | 
 |     typedef Matrix<Scalar, 2, 1> ValueType; | 
 |  | 
 |     /* | 
 |      * Implementation starts here. | 
 |      */ | 
 |     integratorFunctor(const Scalar gain) : _gain(gain) {} | 
 |     integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {} | 
 |     const Scalar _gain; | 
 |  | 
 |     template <typename T1, typename T2> | 
 |     void operator() (const T1 &input, T2 *output, const Scalar dt) const | 
 |     { | 
 |         T2 &o = *output; | 
 |  | 
 |         /* Integrator to test the AD. */ | 
 |         o[0] = input[0] + input[1] * dt * _gain; | 
 |         o[1] = input[1] * _gain; | 
 |     } | 
 |  | 
 |     /* Only needed for the test */ | 
 |     template <typename T1, typename T2, typename T3> | 
 |     void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const | 
 |     { | 
 |         T2 &o = *output; | 
 |  | 
 |         /* Integrator to test the AD. */ | 
 |         o[0] = input[0] + input[1] * dt * _gain; | 
 |         o[1] = input[1] * _gain; | 
 |  | 
 |         if (jacobian) | 
 |         { | 
 |             T3 &j = *jacobian; | 
 |  | 
 |             j(0, 0) = 1; | 
 |             j(0, 1) = dt * _gain; | 
 |             j(1, 0) = 0; | 
 |             j(1, 1) = _gain; | 
 |         } | 
 |     } | 
 |  | 
 | }; | 
 |  | 
 | template<typename Func> void forward_jacobian_cpp11(const Func& f) | 
 | { | 
 |     typedef typename Func::ValueType::Scalar Scalar; | 
 |     typedef typename Func::ValueType ValueType; | 
 |     typedef typename Func::InputType InputType; | 
 |     typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType; | 
 |  | 
 |     InputType x = InputType::Random(InputType::RowsAtCompileTime); | 
 |     ValueType y, yref; | 
 |     JacobianType j, jref; | 
 |  | 
 |     const Scalar dt = internal::random<double>(); | 
 |  | 
 |     jref.setZero(); | 
 |     yref.setZero(); | 
 |     f(x, &yref, &jref, dt); | 
 |  | 
 |     //std::cerr << "y, yref, jref: " << "\n"; | 
 |     //std::cerr << y.transpose() << "\n\n"; | 
 |     //std::cerr << yref << "\n\n"; | 
 |     //std::cerr << jref << "\n\n"; | 
 |  | 
 |     AutoDiffJacobian<Func> autoj(f); | 
 |     autoj(x, &y, &j, dt); | 
 |  | 
 |     //std::cerr << "y j (via autodiff): " << "\n"; | 
 |     //std::cerr << y.transpose() << "\n\n"; | 
 |     //std::cerr << j << "\n\n"; | 
 |  | 
 |     VERIFY_IS_APPROX(y, yref); | 
 |     VERIFY_IS_APPROX(j, jref); | 
 | } | 
 |  | 
 | template<typename Func> void forward_jacobian(const Func& f) | 
 | { | 
 |     typename Func::InputType x = Func::InputType::Random(f.inputs()); | 
 |     typename Func::ValueType y(f.values()), yref(f.values()); | 
 |     typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs()); | 
 |  | 
 |     jref.setZero(); | 
 |     yref.setZero(); | 
 |     f(x,&yref,&jref); | 
 | //     std::cerr << y.transpose() << "\n\n";; | 
 | //     std::cerr << j << "\n\n";; | 
 |  | 
 |     j.setZero(); | 
 |     y.setZero(); | 
 |     AutoDiffJacobian<Func> autoj(f); | 
 |     autoj(x, &y, &j); | 
 | //     std::cerr << y.transpose() << "\n\n";; | 
 | //     std::cerr << j << "\n\n";; | 
 |  | 
 |     VERIFY_IS_APPROX(y, yref); | 
 |     VERIFY_IS_APPROX(j, jref); | 
 | } | 
 |  | 
 | // TODO also check actual derivatives! | 
 | template <int> | 
 | void test_autodiff_scalar() | 
 | { | 
 |   Vector2f p = Vector2f::Random(); | 
 |   typedef AutoDiffScalar<Vector2f> AD; | 
 |   AD ax(p.x(),Vector2f::UnitX()); | 
 |   AD ay(p.y(),Vector2f::UnitY()); | 
 |   AD res = foo<AD>(ax,ay); | 
 |   VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y())); | 
 | } | 
 |  | 
 |  | 
 | // TODO also check actual derivatives! | 
 | template <int> | 
 | void test_autodiff_vector() | 
 | { | 
 |   Vector2f p = Vector2f::Random(); | 
 |   typedef AutoDiffScalar<Vector2f> AD; | 
 |   typedef Matrix<AD,2,1> VectorAD; | 
 |   VectorAD ap = p.cast<AD>(); | 
 |   ap.x().derivatives() = Vector2f::UnitX(); | 
 |   ap.y().derivatives() = Vector2f::UnitY(); | 
 |  | 
 |   AD res = foo<VectorAD>(ap); | 
 |   VERIFY_IS_APPROX(res.value(), foo(p)); | 
 | } | 
 |  | 
 | template <int> | 
 | void test_autodiff_jacobian() | 
 | { | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) )); | 
 |   CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) )); | 
 |   CALL_SUBTEST(( forward_jacobian_cpp11(integratorFunctor<double>(10)) )); | 
 | } | 
 |  | 
 |  | 
 | template <int> | 
 | void test_autodiff_hessian() | 
 | { | 
 |   typedef AutoDiffScalar<VectorXd> AD; | 
 |   typedef Matrix<AD,Eigen::Dynamic,1> VectorAD; | 
 |   typedef AutoDiffScalar<VectorAD> ADD; | 
 |   typedef Matrix<ADD,Eigen::Dynamic,1> VectorADD; | 
 |   VectorADD x(2); | 
 |   double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), s4 = internal::random<double>(); | 
 |   x(0).value()=s1; | 
 |   x(1).value()=s2; | 
 |  | 
 |   //set unit vectors for the derivative directions (partial derivatives of the input vector) | 
 |   x(0).derivatives().resize(2); | 
 |   x(0).derivatives().setZero(); | 
 |   x(0).derivatives()(0)= 1; | 
 |   x(1).derivatives().resize(2); | 
 |   x(1).derivatives().setZero(); | 
 |   x(1).derivatives()(1)=1; | 
 |  | 
 |   //repeat partial derivatives for the inner AutoDiffScalar | 
 |   x(0).value().derivatives() = VectorXd::Unit(2,0); | 
 |   x(1).value().derivatives() = VectorXd::Unit(2,1); | 
 |  | 
 |   //set the hessian matrix to zero | 
 |   for(int idx=0; idx<2; idx++) { | 
 |       x(0).derivatives()(idx).derivatives()  = VectorXd::Zero(2); | 
 |       x(1).derivatives()(idx).derivatives()  = VectorXd::Zero(2); | 
 |   } | 
 |  | 
 |   ADD y = sin(AD(s3)*x(0) + AD(s4)*x(1)); | 
 |  | 
 |   VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value()); | 
 |   VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value()); | 
 |   VERIFY_IS_APPROX(y.value().derivatives()(0), s3*std::cos(s1*s3+s2*s4)); | 
 |   VERIFY_IS_APPROX(y.value().derivatives()(1), s4*std::cos(s1*s3+s2*s4)); | 
 |   VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s3,s4*s3)); | 
 |   VERIFY_IS_APPROX(y.derivatives()(1).derivatives(),  -std::sin(s1*s3+s2*s4)*Vector2d(s3*s4,s4*s4)); | 
 |  | 
 |   ADD z = x(0)*x(1); | 
 |   VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0,1)); | 
 |   VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1,0)); | 
 | } | 
 |  | 
 | double bug_1222() { | 
 |   typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; | 
 |   const double _cv1_3 = 1.0; | 
 |   const AD chi_3 = 1.0; | 
 |   // this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType> | 
 |   const AD denom = chi_3 + _cv1_3; | 
 |   return denom.value(); | 
 | } | 
 |  | 
 | #ifdef EIGEN_TEST_PART_5 | 
 |  | 
 | double bug_1223() { | 
 |   using std::min; | 
 |   typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; | 
 |  | 
 |   const double _cv1_3 = 1.0; | 
 |   const AD chi_3 = 1.0; | 
 |   const AD denom = 1.0; | 
 |  | 
 |   // failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& value) | 
 |   // without initializing m_derivatives (which is a reference in this case) | 
 |   #define EIGEN_TEST_SPACE | 
 |   const AD t = min EIGEN_TEST_SPACE (denom / chi_3, 1.0); | 
 |  | 
 |   const AD t2 = min EIGEN_TEST_SPACE (denom / (chi_3 * _cv1_3), 1.0); | 
 |  | 
 |   return t.value() + t2.value(); | 
 | } | 
 |  | 
 | // regression test for some compilation issues with specializations of ScalarBinaryOpTraits | 
 | void bug_1260() { | 
 |   Matrix4d A = Matrix4d::Ones(); | 
 |   Vector4d v = Vector4d::Ones(); | 
 |   A*v; | 
 | } | 
 |  | 
 | // check a compilation issue with numext::max | 
 | double bug_1261() { | 
 |   typedef AutoDiffScalar<Matrix2d> AD; | 
 |   typedef Matrix<AD,2,1> VectorAD; | 
 |  | 
 |   VectorAD v(0.,0.); | 
 |   const AD maxVal = v.maxCoeff(); | 
 |   const AD minVal = v.minCoeff(); | 
 |   return maxVal.value() + minVal.value(); | 
 | } | 
 |  | 
 | double bug_1264() { | 
 |   typedef AutoDiffScalar<Vector2d> AD; | 
 |   const AD s = 0.; | 
 |   const Matrix<AD, 3, 1> v1(0.,0.,0.); | 
 |   const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1; | 
 |   return v2(0).value(); | 
 | } | 
 |  | 
 | // check with expressions on constants | 
 | double bug_1281() { | 
 |   int n = 2; | 
 |   typedef AutoDiffScalar<VectorXd> AD; | 
 |   const AD c = 1.; | 
 |   AD x0(2,n,0); | 
 |   AD y1 = (AD(c)+AD(c))*x0; | 
 |   y1 = x0 * (AD(c)+AD(c)); | 
 |   AD y2 = (-AD(c))+x0; | 
 |   y2 = x0+(-AD(c)); | 
 |   AD y3 = (AD(c)*(-AD(c))+AD(c))*x0; | 
 |   y3 = x0 * (AD(c)*(-AD(c))+AD(c)); | 
 |   return (y1+y2+y3).value(); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | EIGEN_DECLARE_TEST(autodiff) | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( test_autodiff_scalar<1>() ); | 
 |     CALL_SUBTEST_2( test_autodiff_vector<1>() ); | 
 |     CALL_SUBTEST_3( test_autodiff_jacobian<1>() ); | 
 |     CALL_SUBTEST_4( test_autodiff_hessian<1>() ); | 
 |   } | 
 |  | 
 |   CALL_SUBTEST_5( bug_1222() ); | 
 |   CALL_SUBTEST_5( bug_1223() ); | 
 |   CALL_SUBTEST_5( bug_1260() ); | 
 |   CALL_SUBTEST_5( bug_1261() ); | 
 |   CALL_SUBTEST_5( bug_1281() ); | 
 | } | 
 |  |