| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_REAL_SCHUR_H | 
 | #define EIGEN_REAL_SCHUR_H | 
 |  | 
 | #include "./HessenbergDecomposition.h" | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |  * | 
 |  * | 
 |  * \class RealSchur | 
 |  * | 
 |  * \brief Performs a real Schur decomposition of a square matrix | 
 |  * | 
 |  * \tparam MatrixType_ the type of the matrix of which we are computing the | 
 |  * real Schur decomposition; this is expected to be an instantiation of the | 
 |  * Matrix class template. | 
 |  * | 
 |  * Given a real square matrix A, this class computes the real Schur | 
 |  * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and | 
 |  * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose | 
 |  * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular | 
 |  * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 | 
 |  * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the | 
 |  * blocks on the diagonal of T are the same as the eigenvalues of the matrix | 
 |  * A, and thus the real Schur decomposition is used in EigenSolver to compute | 
 |  * the eigendecomposition of a matrix. | 
 |  * | 
 |  * Call the function compute() to compute the real Schur decomposition of a | 
 |  * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) | 
 |  * constructor which computes the real Schur decomposition at construction | 
 |  * time. Once the decomposition is computed, you can use the matrixU() and | 
 |  * matrixT() functions to retrieve the matrices U and T in the decomposition. | 
 |  * | 
 |  * The documentation of RealSchur(const MatrixType&, bool) contains an example | 
 |  * of the typical use of this class. | 
 |  * | 
 |  * \note The implementation is adapted from | 
 |  * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). | 
 |  * Their code is based on EISPACK. | 
 |  * | 
 |  * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver | 
 |  */ | 
 | template <typename MatrixType_> | 
 | class RealSchur { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     Options = internal::traits<MatrixType>::Options, | 
 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |   }; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; | 
 |   typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
 |  | 
 |   typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; | 
 |   typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
 |  | 
 |   /** \brief Default constructor. | 
 |    * | 
 |    * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed. | 
 |    * | 
 |    * The default constructor is useful in cases in which the user intends to | 
 |    * perform decompositions via compute().  The \p size parameter is only | 
 |    * used as a hint. It is not an error to give a wrong \p size, but it may | 
 |    * impair performance. | 
 |    * | 
 |    * \sa compute() for an example. | 
 |    */ | 
 |   explicit RealSchur(Index size = RowsAtCompileTime == Dynamic ? 1 : RowsAtCompileTime) | 
 |       : m_matT(size, size), | 
 |         m_matU(size, size), | 
 |         m_workspaceVector(size), | 
 |         m_hess(size), | 
 |         m_isInitialized(false), | 
 |         m_matUisUptodate(false), | 
 |         m_maxIters(-1) {} | 
 |  | 
 |   /** \brief Constructor; computes real Schur decomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
 |    * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
 |    * | 
 |    * This constructor calls compute() to compute the Schur decomposition. | 
 |    * | 
 |    * Example: \include RealSchur_RealSchur_MatrixType.cpp | 
 |    * Output: \verbinclude RealSchur_RealSchur_MatrixType.out | 
 |    */ | 
 |   template <typename InputType> | 
 |   explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true) | 
 |       : m_matT(matrix.rows(), matrix.cols()), | 
 |         m_matU(matrix.rows(), matrix.cols()), | 
 |         m_workspaceVector(matrix.rows()), | 
 |         m_hess(matrix.rows()), | 
 |         m_isInitialized(false), | 
 |         m_matUisUptodate(false), | 
 |         m_maxIters(-1) { | 
 |     compute(matrix.derived(), computeU); | 
 |   } | 
 |  | 
 |   /** \brief Returns the orthogonal matrix in the Schur decomposition. | 
 |    * | 
 |    * \returns A const reference to the matrix U. | 
 |    * | 
 |    * \pre Either the constructor RealSchur(const MatrixType&, bool) or the | 
 |    * member function compute(const MatrixType&, bool) has been called before | 
 |    * to compute the Schur decomposition of a matrix, and \p computeU was set | 
 |    * to true (the default value). | 
 |    * | 
 |    * \sa RealSchur(const MatrixType&, bool) for an example | 
 |    */ | 
 |   const MatrixType& matrixU() const { | 
 |     eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
 |     eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); | 
 |     return m_matU; | 
 |   } | 
 |  | 
 |   /** \brief Returns the quasi-triangular matrix in the Schur decomposition. | 
 |    * | 
 |    * \returns A const reference to the matrix T. | 
 |    * | 
 |    * \pre Either the constructor RealSchur(const MatrixType&, bool) or the | 
 |    * member function compute(const MatrixType&, bool) has been called before | 
 |    * to compute the Schur decomposition of a matrix. | 
 |    * | 
 |    * \sa RealSchur(const MatrixType&, bool) for an example | 
 |    */ | 
 |   const MatrixType& matrixT() const { | 
 |     eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
 |     return m_matT; | 
 |   } | 
 |  | 
 |   /** \brief Computes Schur decomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
 |    * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
 |    * \returns    Reference to \c *this | 
 |    * | 
 |    * The Schur decomposition is computed by first reducing the matrix to | 
 |    * Hessenberg form using the class HessenbergDecomposition. The Hessenberg | 
 |    * matrix is then reduced to triangular form by performing Francis QR | 
 |    * iterations with implicit double shift. The cost of computing the Schur | 
 |    * decomposition depends on the number of iterations; as a rough guide, it | 
 |    * may be taken to be \f$25n^3\f$ flops if \a computeU is true and | 
 |    * \f$10n^3\f$ flops if \a computeU is false. | 
 |    * | 
 |    * Example: \include RealSchur_compute.cpp | 
 |    * Output: \verbinclude RealSchur_compute.out | 
 |    * | 
 |    * \sa compute(const MatrixType&, bool, Index) | 
 |    */ | 
 |   template <typename InputType> | 
 |   RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); | 
 |  | 
 |   /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T | 
 |    *  \param[in] matrixH Matrix in Hessenberg form H | 
 |    *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T | 
 |    *  \param computeU Computes the matriX U of the Schur vectors | 
 |    * \return Reference to \c *this | 
 |    * | 
 |    *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH | 
 |    *  using either the class HessenbergDecomposition or another mean. | 
 |    *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H | 
 |    *  When computeU is true, this routine computes the matrix U such that | 
 |    *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix | 
 |    * | 
 |    * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix | 
 |    * is not available, the user should give an identity matrix (Q.setIdentity()) | 
 |    * | 
 |    * \sa compute(const MatrixType&, bool) | 
 |    */ | 
 |   template <typename HessMatrixType, typename OrthMatrixType> | 
 |   RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
 |    */ | 
 |   ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \brief Sets the maximum number of iterations allowed. | 
 |    * | 
 |    * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size | 
 |    * of the matrix. | 
 |    */ | 
 |   RealSchur& setMaxIterations(Index maxIters) { | 
 |     m_maxIters = maxIters; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** \brief Returns the maximum number of iterations. */ | 
 |   Index getMaxIterations() { return m_maxIters; } | 
 |  | 
 |   /** \brief Maximum number of iterations per row. | 
 |    * | 
 |    * If not otherwise specified, the maximum number of iterations is this number times the size of the | 
 |    * matrix. It is currently set to 40. | 
 |    */ | 
 |   static const int m_maxIterationsPerRow = 40; | 
 |  | 
 |  private: | 
 |   MatrixType m_matT; | 
 |   MatrixType m_matU; | 
 |   ColumnVectorType m_workspaceVector; | 
 |   HessenbergDecomposition<MatrixType> m_hess; | 
 |   ComputationInfo m_info; | 
 |   bool m_isInitialized; | 
 |   bool m_matUisUptodate; | 
 |   Index m_maxIters; | 
 |  | 
 |   typedef Matrix<Scalar, 3, 1> Vector3s; | 
 |  | 
 |   Scalar computeNormOfT(); | 
 |   Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero); | 
 |   void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift); | 
 |   void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); | 
 |   void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); | 
 |   void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, | 
 |                             Scalar* workspace); | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | template <typename InputType> | 
 | RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) { | 
 |   const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)(); | 
 |  | 
 |   eigen_assert(matrix.cols() == matrix.rows()); | 
 |   Index maxIters = m_maxIters; | 
 |   if (maxIters == -1) maxIters = m_maxIterationsPerRow * matrix.rows(); | 
 |  | 
 |   Scalar scale = matrix.derived().cwiseAbs().maxCoeff(); | 
 |   if (scale < considerAsZero) { | 
 |     m_matT.setZero(matrix.rows(), matrix.cols()); | 
 |     if (computeU) m_matU.setIdentity(matrix.rows(), matrix.cols()); | 
 |     m_info = Success; | 
 |     m_isInitialized = true; | 
 |     m_matUisUptodate = computeU; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Step 1. Reduce to Hessenberg form | 
 |   m_hess.compute(matrix.derived() / scale); | 
 |  | 
 |   // Step 2. Reduce to real Schur form | 
 |   // Note: we copy m_hess.matrixQ() into m_matU here and not in computeFromHessenberg | 
 |   //       to be able to pass our working-space buffer for the Householder to Dense evaluation. | 
 |   m_workspaceVector.resize(matrix.cols()); | 
 |   if (computeU) m_hess.matrixQ().evalTo(m_matU, m_workspaceVector); | 
 |   computeFromHessenberg(m_hess.matrixH(), m_matU, computeU); | 
 |  | 
 |   m_matT *= scale; | 
 |  | 
 |   return *this; | 
 | } | 
 | template <typename MatrixType> | 
 | template <typename HessMatrixType, typename OrthMatrixType> | 
 | RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, | 
 |                                                                     const OrthMatrixType& matrixQ, bool computeU) { | 
 |   using std::abs; | 
 |  | 
 |   m_matT = matrixH; | 
 |   m_workspaceVector.resize(m_matT.cols()); | 
 |   if (computeU && !internal::is_same_dense(m_matU, matrixQ)) m_matU = matrixQ; | 
 |  | 
 |   Index maxIters = m_maxIters; | 
 |   if (maxIters == -1) maxIters = m_maxIterationsPerRow * matrixH.rows(); | 
 |   Scalar* workspace = &m_workspaceVector.coeffRef(0); | 
 |  | 
 |   // The matrix m_matT is divided in three parts. | 
 |   // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. | 
 |   // Rows il,...,iu is the part we are working on (the active window). | 
 |   // Rows iu+1,...,end are already brought in triangular form. | 
 |   Index iu = m_matT.cols() - 1; | 
 |   Index iter = 0;       // iteration count for current eigenvalue | 
 |   Index totalIter = 0;  // iteration count for whole matrix | 
 |   Scalar exshift(0);    // sum of exceptional shifts | 
 |   Scalar norm = computeNormOfT(); | 
 |   // sub-diagonal entries smaller than considerAsZero will be treated as zero. | 
 |   // We use eps^2 to enable more precision in small eigenvalues. | 
 |   Scalar considerAsZero = | 
 |       numext::maxi<Scalar>(norm * numext::abs2(NumTraits<Scalar>::epsilon()), (std::numeric_limits<Scalar>::min)()); | 
 |  | 
 |   if (!numext::is_exactly_zero(norm)) { | 
 |     while (iu >= 0) { | 
 |       Index il = findSmallSubdiagEntry(iu, considerAsZero); | 
 |  | 
 |       // Check for convergence | 
 |       if (il == iu)  // One root found | 
 |       { | 
 |         m_matT.coeffRef(iu, iu) = m_matT.coeff(iu, iu) + exshift; | 
 |         if (iu > 0) m_matT.coeffRef(iu, iu - 1) = Scalar(0); | 
 |         iu--; | 
 |         iter = 0; | 
 |       } else if (il == iu - 1)  // Two roots found | 
 |       { | 
 |         splitOffTwoRows(iu, computeU, exshift); | 
 |         iu -= 2; | 
 |         iter = 0; | 
 |       } else  // No convergence yet | 
 |       { | 
 |         // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 | 
 |         // -Wall -DNDEBUG ) | 
 |         Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo; | 
 |         computeShift(iu, iter, exshift, shiftInfo); | 
 |         iter = iter + 1; | 
 |         totalIter = totalIter + 1; | 
 |         if (totalIter > maxIters) break; | 
 |         Index im; | 
 |         initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); | 
 |         performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); | 
 |       } | 
 |     } | 
 |   } | 
 |   if (totalIter <= maxIters) | 
 |     m_info = Success; | 
 |   else | 
 |     m_info = NoConvergence; | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_matUisUptodate = computeU; | 
 |   return *this; | 
 | } | 
 |  | 
 | /** \internal Computes and returns vector L1 norm of T */ | 
 | template <typename MatrixType> | 
 | inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT() { | 
 |   const Index size = m_matT.cols(); | 
 |   // FIXME to be efficient the following would requires a triangular reduxion code | 
 |   // Scalar norm = m_matT.upper().cwiseAbs().sum() | 
 |   //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); | 
 |   Scalar norm(0); | 
 |   for (Index j = 0; j < size; ++j) norm += m_matT.col(j).segment(0, (std::min)(size, j + 2)).cwiseAbs().sum(); | 
 |   return norm; | 
 | } | 
 |  | 
 | /** \internal Look for single small sub-diagonal element and returns its index */ | 
 | template <typename MatrixType> | 
 | inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero) { | 
 |   using std::abs; | 
 |   Index res = iu; | 
 |   while (res > 0) { | 
 |     Scalar s = abs(m_matT.coeff(res - 1, res - 1)) + abs(m_matT.coeff(res, res)); | 
 |  | 
 |     s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero); | 
 |  | 
 |     if (abs(m_matT.coeff(res, res - 1)) <= s) break; | 
 |     res--; | 
 |   } | 
 |   return res; | 
 | } | 
 |  | 
 | /** \internal Update T given that rows iu-1 and iu decouple from the rest. */ | 
 | template <typename MatrixType> | 
 | inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   const Index size = m_matT.cols(); | 
 |  | 
 |   // The eigenvalues of the 2x2 matrix [a b; c d] are | 
 |   // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc | 
 |   Scalar p = Scalar(0.5) * (m_matT.coeff(iu - 1, iu - 1) - m_matT.coeff(iu, iu)); | 
 |   Scalar q = p * p + m_matT.coeff(iu, iu - 1) * m_matT.coeff(iu - 1, iu);  // q = tr^2 / 4 - det = discr/4 | 
 |   m_matT.coeffRef(iu, iu) += exshift; | 
 |   m_matT.coeffRef(iu - 1, iu - 1) += exshift; | 
 |  | 
 |   if (q >= Scalar(0))  // Two real eigenvalues | 
 |   { | 
 |     Scalar z = sqrt(abs(q)); | 
 |     JacobiRotation<Scalar> rot; | 
 |     if (p >= Scalar(0)) | 
 |       rot.makeGivens(p + z, m_matT.coeff(iu, iu - 1)); | 
 |     else | 
 |       rot.makeGivens(p - z, m_matT.coeff(iu, iu - 1)); | 
 |  | 
 |     m_matT.rightCols(size - iu + 1).applyOnTheLeft(iu - 1, iu, rot.adjoint()); | 
 |     m_matT.topRows(iu + 1).applyOnTheRight(iu - 1, iu, rot); | 
 |     m_matT.coeffRef(iu, iu - 1) = Scalar(0); | 
 |     if (computeU) m_matU.applyOnTheRight(iu - 1, iu, rot); | 
 |   } | 
 |  | 
 |   if (iu > 1) m_matT.coeffRef(iu - 1, iu - 2) = Scalar(0); | 
 | } | 
 |  | 
 | /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ | 
 | template <typename MatrixType> | 
 | inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |   shiftInfo.coeffRef(0) = m_matT.coeff(iu, iu); | 
 |   shiftInfo.coeffRef(1) = m_matT.coeff(iu - 1, iu - 1); | 
 |   shiftInfo.coeffRef(2) = m_matT.coeff(iu, iu - 1) * m_matT.coeff(iu - 1, iu); | 
 |  | 
 |   // Alternate exceptional shifting strategy every 16 iterations. | 
 |   if (iter % 16 == 0) { | 
 |     // Wilkinson's original ad hoc shift | 
 |     if (iter % 32 != 0) { | 
 |       exshift += shiftInfo.coeff(0); | 
 |       for (Index i = 0; i <= iu; ++i) m_matT.coeffRef(i, i) -= shiftInfo.coeff(0); | 
 |       Scalar s = abs(m_matT.coeff(iu, iu - 1)) + abs(m_matT.coeff(iu - 1, iu - 2)); | 
 |       shiftInfo.coeffRef(0) = Scalar(0.75) * s; | 
 |       shiftInfo.coeffRef(1) = Scalar(0.75) * s; | 
 |       shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; | 
 |     } else { | 
 |       // MATLAB's new ad hoc shift | 
 |       Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); | 
 |       s = s * s + shiftInfo.coeff(2); | 
 |       if (s > Scalar(0)) { | 
 |         s = sqrt(s); | 
 |         if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) s = -s; | 
 |         s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); | 
 |         s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; | 
 |         exshift += s; | 
 |         for (Index i = 0; i <= iu; ++i) m_matT.coeffRef(i, i) -= s; | 
 |         shiftInfo.setConstant(Scalar(0.964)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ | 
 | template <typename MatrixType> | 
 | inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, | 
 |                                                      Vector3s& firstHouseholderVector) { | 
 |   using std::abs; | 
 |   Vector3s& v = firstHouseholderVector;  // alias to save typing | 
 |  | 
 |   for (im = iu - 2; im >= il; --im) { | 
 |     const Scalar Tmm = m_matT.coeff(im, im); | 
 |     const Scalar r = shiftInfo.coeff(0) - Tmm; | 
 |     const Scalar s = shiftInfo.coeff(1) - Tmm; | 
 |     v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im + 1, im) + m_matT.coeff(im, im + 1); | 
 |     v.coeffRef(1) = m_matT.coeff(im + 1, im + 1) - Tmm - r - s; | 
 |     v.coeffRef(2) = m_matT.coeff(im + 2, im + 1); | 
 |     if (im == il) { | 
 |       break; | 
 |     } | 
 |     const Scalar lhs = m_matT.coeff(im, im - 1) * (abs(v.coeff(1)) + abs(v.coeff(2))); | 
 |     const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im - 1, im - 1)) + abs(Tmm) + abs(m_matT.coeff(im + 1, im + 1))); | 
 |     if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs) break; | 
 |   } | 
 | } | 
 |  | 
 | /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ | 
 | template <typename MatrixType> | 
 | inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, | 
 |                                                         const Vector3s& firstHouseholderVector, Scalar* workspace) { | 
 |   eigen_assert(im >= il); | 
 |   eigen_assert(im <= iu - 2); | 
 |  | 
 |   const Index size = m_matT.cols(); | 
 |  | 
 |   for (Index k = im; k <= iu - 2; ++k) { | 
 |     bool firstIteration = (k == im); | 
 |  | 
 |     Vector3s v; | 
 |     if (firstIteration) | 
 |       v = firstHouseholderVector; | 
 |     else | 
 |       v = m_matT.template block<3, 1>(k, k - 1); | 
 |  | 
 |     Scalar tau, beta; | 
 |     Matrix<Scalar, 2, 1> ess; | 
 |     v.makeHouseholder(ess, tau, beta); | 
 |  | 
 |     if (!numext::is_exactly_zero(beta))  // if v is not zero | 
 |     { | 
 |       if (firstIteration && k > il) | 
 |         m_matT.coeffRef(k, k - 1) = -m_matT.coeff(k, k - 1); | 
 |       else if (!firstIteration) | 
 |         m_matT.coeffRef(k, k - 1) = beta; | 
 |  | 
 |       // These Householder transformations form the O(n^3) part of the algorithm | 
 |       m_matT.block(k, k, 3, size - k).applyHouseholderOnTheLeft(ess, tau, workspace); | 
 |       m_matT.block(0, k, (std::min)(iu, k + 3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |       if (computeU) m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |     } | 
 |   } | 
 |  | 
 |   Matrix<Scalar, 2, 1> v = m_matT.template block<2, 1>(iu - 1, iu - 2); | 
 |   Scalar tau, beta; | 
 |   Matrix<Scalar, 1, 1> ess; | 
 |   v.makeHouseholder(ess, tau, beta); | 
 |  | 
 |   if (!numext::is_exactly_zero(beta))  // if v is not zero | 
 |   { | 
 |     m_matT.coeffRef(iu - 1, iu - 2) = beta; | 
 |     m_matT.block(iu - 1, iu - 1, 2, size - iu + 1).applyHouseholderOnTheLeft(ess, tau, workspace); | 
 |     m_matT.block(0, iu - 1, iu + 1, 2).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |     if (computeU) m_matU.block(0, iu - 1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); | 
 |   } | 
 |  | 
 |   // clean up pollution due to round-off errors | 
 |   for (Index i = im + 2; i <= iu; ++i) { | 
 |     m_matT.coeffRef(i, i - 2) = Scalar(0); | 
 |     if (i > im + 2) m_matT.coeffRef(i, i - 3) = Scalar(0); | 
 |   } | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_REAL_SCHUR_H |