|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // Function void Eigen::AlignedBox::transform(const Transform& transform) | 
|  | // is provided under the following license agreement: | 
|  | // | 
|  | // Software License Agreement (BSD License) | 
|  | // | 
|  | // Copyright (c) 2011-2014, Willow Garage, Inc. | 
|  | // Copyright (c) 2014-2015, Open Source Robotics Foundation | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions | 
|  | // are met: | 
|  | // | 
|  | //  * Redistributions of source code must retain the above copyright | 
|  | //    notice, this list of conditions and the following disclaimer. | 
|  | //  * Redistributions in binary form must reproduce the above | 
|  | //    copyright notice, this list of conditions and the following | 
|  | //    disclaimer in the documentation and/or other materials provided | 
|  | //    with the distribution. | 
|  | //  * Neither the name of Open Source Robotics Foundation nor the names of its | 
|  | //    contributors may be used to endorse or promote products derived | 
|  | //    from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
|  | // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
|  | // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
|  | // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | 
|  | // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | 
|  | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | 
|  | // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | 
|  | // POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | #ifndef EIGEN_ALIGNEDBOX_H | 
|  | #define EIGEN_ALIGNEDBOX_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * | 
|  | * \class AlignedBox | 
|  | * | 
|  | * \brief An axis aligned box | 
|  | * | 
|  | * \tparam Scalar_ the type of the scalar coefficients | 
|  | * \tparam AmbientDim_ the dimension of the ambient space, can be a compile time value or Dynamic. | 
|  | * | 
|  | * This class represents an axis aligned box as a pair of the minimal and maximal corners. | 
|  | * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using | 
|  | * isEmpty(). \sa alignedboxtypedefs | 
|  | */ | 
|  | template <typename Scalar_, int AmbientDim_> | 
|  | class AlignedBox { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_, AmbientDim_) | 
|  | enum { AmbientDimAtCompileTime = AmbientDim_ }; | 
|  | typedef Scalar_ Scalar; | 
|  | typedef NumTraits<Scalar> ScalarTraits; | 
|  | typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
|  | typedef typename ScalarTraits::Real RealScalar; | 
|  | typedef typename ScalarTraits::NonInteger NonInteger; | 
|  | typedef Matrix<Scalar, AmbientDimAtCompileTime, 1> VectorType; | 
|  | typedef CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> VectorTypeSum; | 
|  |  | 
|  | /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ | 
|  | enum CornerType { | 
|  | /** 1D names @{ */ | 
|  | Min = 0, | 
|  | Max = 1, | 
|  | /** @} */ | 
|  |  | 
|  | /** Identifier for 2D corner @{ */ | 
|  | BottomLeft = 0, | 
|  | BottomRight = 1, | 
|  | TopLeft = 2, | 
|  | TopRight = 3, | 
|  | /** @} */ | 
|  |  | 
|  | /** Identifier for 3D corner  @{ */ | 
|  | BottomLeftFloor = 0, | 
|  | BottomRightFloor = 1, | 
|  | TopLeftFloor = 2, | 
|  | TopRightFloor = 3, | 
|  | BottomLeftCeil = 4, | 
|  | BottomRightCeil = 5, | 
|  | TopLeftCeil = 6, | 
|  | TopRightCeil = 7 | 
|  | /** @} */ | 
|  | }; | 
|  |  | 
|  | /** Default constructor initializing a null box. */ | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox() { | 
|  | if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime != Dynamic)) setEmpty(); | 
|  | } | 
|  |  | 
|  | /** Constructs a null box with \a _dim the dimension of the ambient space. */ | 
|  | EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) { setEmpty(); } | 
|  |  | 
|  | /** Constructs a box with extremities \a _min and \a _max. | 
|  | * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. | 
|  | */ | 
|  | template <typename OtherVectorType1, typename OtherVectorType2> | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) | 
|  | : m_min(_min), m_max(_max) {} | 
|  |  | 
|  | /** Constructs a box containing a single point \a p. */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC ~AlignedBox() {} | 
|  |  | 
|  | /** \returns the dimension in which the box holds */ | 
|  | EIGEN_DEVICE_FUNC inline Index dim() const { | 
|  | return AmbientDimAtCompileTime == Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); | 
|  | } | 
|  |  | 
|  | /** \deprecated use isEmpty() */ | 
|  | EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); } | 
|  |  | 
|  | /** \deprecated use setEmpty() */ | 
|  | EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); } | 
|  |  | 
|  | /** \returns true if the box is empty. | 
|  | * \sa setEmpty */ | 
|  | EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } | 
|  |  | 
|  | /** Makes \c *this an empty box. | 
|  | * \sa isEmpty */ | 
|  | EIGEN_DEVICE_FUNC inline void setEmpty() { | 
|  | m_min.setConstant(ScalarTraits::highest()); | 
|  | m_max.setConstant(ScalarTraits::lowest()); | 
|  | } | 
|  |  | 
|  | /** \returns the minimal corner */ | 
|  | EIGEN_DEVICE_FUNC inline const VectorType&(min)() const { return m_min; } | 
|  | /** \returns a non const reference to the minimal corner */ | 
|  | EIGEN_DEVICE_FUNC inline VectorType&(min)() { return m_min; } | 
|  | /** \returns the maximal corner */ | 
|  | EIGEN_DEVICE_FUNC inline const VectorType&(max)() const { return m_max; } | 
|  | /** \returns a non const reference to the maximal corner */ | 
|  | EIGEN_DEVICE_FUNC inline VectorType&(max)() { return m_max; } | 
|  |  | 
|  | /** \returns the center of the box */ | 
|  | EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient) | 
|  | center() const { | 
|  | return (m_min + m_max) / RealScalar(2); | 
|  | } | 
|  |  | 
|  | /** \returns the lengths of the sides of the bounding box. | 
|  | * Note that this function does not get the same | 
|  | * result for integral or floating scalar types: see | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline const CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const VectorType, | 
|  | const VectorType> | 
|  | sizes() const { | 
|  | return m_max - m_min; | 
|  | } | 
|  |  | 
|  | /** \returns the volume of the bounding box */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar volume() const { return sizes().prod(); } | 
|  |  | 
|  | /** \returns an expression for the bounding box diagonal vector | 
|  | * if the length of the diagonal is needed: diagonal().norm() | 
|  | * will provide it. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline CwiseBinaryOp<internal::scalar_difference_op<Scalar, Scalar>, const VectorType, | 
|  | const VectorType> | 
|  | diagonal() const { | 
|  | return sizes(); | 
|  | } | 
|  |  | 
|  | /** \returns the vertex of the bounding box at the corner defined by | 
|  | * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. | 
|  | * For 1D bounding boxes corners are named by 2 enum constants: | 
|  | * BottomLeft and BottomRight. | 
|  | * For 2D bounding boxes, corners are named by 4 enum constants: | 
|  | * BottomLeft, BottomRight, TopLeft, TopRight. | 
|  | * For 3D bounding boxes, the following names are added: | 
|  | * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const { | 
|  | EIGEN_STATIC_ASSERT(AmbientDim_ <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); | 
|  |  | 
|  | VectorType res; | 
|  |  | 
|  | Index mult = 1; | 
|  | for (Index d = 0; d < dim(); ++d) { | 
|  | if (mult & corner) | 
|  | res[d] = m_max[d]; | 
|  | else | 
|  | res[d] = m_min[d]; | 
|  | mult *= 2; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \returns a random point inside the bounding box sampled with | 
|  | * a uniform distribution */ | 
|  | EIGEN_DEVICE_FUNC inline VectorType sample() const { | 
|  | VectorType r(dim()); | 
|  | for (Index d = 0; d < dim(); ++d) { | 
|  | if (!ScalarTraits::IsInteger) { | 
|  | r[d] = m_min[d] + (m_max[d] - m_min[d]) * internal::random<Scalar>(Scalar(0), Scalar(1)); | 
|  | } else | 
|  | r[d] = internal::random(m_min[d], m_max[d]); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /** \returns true if the point \a p is inside the box \c *this. */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase<Derived>& p) const { | 
|  | typename internal::nested_eval<Derived, 2>::type p_n(p.derived()); | 
|  | return (m_min.array() <= p_n.array()).all() && (p_n.array() <= m_max.array()).all(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the box \a b is entirely inside the box \c *this. */ | 
|  | EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const { | 
|  | return (m_min.array() <= (b.min)().array()).all() && ((b.max)().array() <= m_max.array()).all(); | 
|  | } | 
|  |  | 
|  | /** \returns true if the box \a b is intersecting the box \c *this. | 
|  | * \sa intersection, clamp */ | 
|  | EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const { | 
|  | return (m_min.array() <= (b.max)().array()).all() && ((b.min)().array() <= m_max.array()).all(); | 
|  | } | 
|  |  | 
|  | /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. | 
|  | * \sa extend(const AlignedBox&) */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase<Derived>& p) { | 
|  | typename internal::nested_eval<Derived, 2>::type p_n(p.derived()); | 
|  | m_min = m_min.cwiseMin(p_n); | 
|  | m_max = m_max.cwiseMax(p_n); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. | 
|  | * \sa merged, extend(const MatrixBase&) */ | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b) { | 
|  | m_min = m_min.cwiseMin(b.m_min); | 
|  | m_max = m_max.cwiseMax(b.m_max); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Clamps \c *this by the box \a b and returns a reference to \c *this. | 
|  | * \note If the boxes don't intersect, the resulting box is empty. | 
|  | * \sa intersection(), intersects() */ | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b) { | 
|  | m_min = m_min.cwiseMax(b.m_min); | 
|  | m_max = m_max.cwiseMin(b.m_max); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Returns an AlignedBox that is the intersection of \a b and \c *this | 
|  | * \note If the boxes don't intersect, the resulting box is empty. | 
|  | * \sa intersects(), clamp, contains()  */ | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const { | 
|  | return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); | 
|  | } | 
|  |  | 
|  | /** Returns an AlignedBox that is the union of \a b and \c *this. | 
|  | * \note Merging with an empty box may result in a box bigger than \c *this. | 
|  | * \sa extend(const AlignedBox&) */ | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const { | 
|  | return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); | 
|  | } | 
|  |  | 
|  | /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase<Derived>& a_t) { | 
|  | const typename internal::nested_eval<Derived, 2>::type t(a_t.derived()); | 
|  | m_min += t; | 
|  | m_max += t; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a copy of \c *this translated by the vector \a t. */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline AlignedBox translated(const MatrixBase<Derived>& a_t) const { | 
|  | AlignedBox result(m_min, m_max); | 
|  | result.translate(a_t); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** \returns the squared distance between the point \a p and the box \c *this, | 
|  | * and zero if \a p is inside the box. | 
|  | * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const; | 
|  |  | 
|  | /** \returns the squared distance between the boxes \a b and \c *this, | 
|  | * and zero if the boxes intersect. | 
|  | * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const; | 
|  |  | 
|  | /** \returns the distance between the point \a p and the box \c *this, | 
|  | * and zero if \a p is inside the box. | 
|  | * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const { | 
|  | EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); | 
|  | } | 
|  |  | 
|  | /** \returns the distance between the boxes \a b and \c *this, | 
|  | * and zero if the boxes intersect. | 
|  | * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const { | 
|  | EIGEN_USING_STD(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Specialization of transform for pure translation. | 
|  | */ | 
|  | template <int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline void transform( | 
|  | const typename Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>::TranslationType& translation) { | 
|  | this->translate(translation); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Transforms this box by \a transform and recomputes it to | 
|  | * still be an axis-aligned box. | 
|  | * | 
|  | * \note This method is provided under BSD license (see the top of this file). | 
|  | */ | 
|  | template <int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC inline void transform(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) { | 
|  | // Only Affine and Isometry transforms are currently supported. | 
|  | EIGEN_STATIC_ASSERT(Mode == Affine || Mode == AffineCompact || Mode == Isometry, | 
|  | THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS); | 
|  |  | 
|  | // Method adapted from FCL src/shape/geometric_shapes_utility.cpp#computeBV<AABB, Box>(...) | 
|  | // https://github.com/flexible-collision-library/fcl/blob/fcl-0.4/src/shape/geometric_shapes_utility.cpp#L292 | 
|  | // | 
|  | // Here's a nice explanation why it works: https://zeuxcg.org/2010/10/17/aabb-from-obb-with-component-wise-abs/ | 
|  |  | 
|  | // two times rotated extent | 
|  | const VectorType rotated_extent_2 = transform.linear().cwiseAbs() * sizes(); | 
|  | // two times new center | 
|  | const VectorType rotated_center_2 = | 
|  | transform.linear() * (this->m_max + this->m_min) + Scalar(2) * transform.translation(); | 
|  |  | 
|  | this->m_max = (rotated_center_2 + rotated_extent_2) / Scalar(2); | 
|  | this->m_min = (rotated_center_2 - rotated_extent_2) / Scalar(2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \returns a copy of \c *this transformed by \a transform and recomputed to | 
|  | * still be an axis-aligned box. | 
|  | */ | 
|  | template <int Mode, int Options> | 
|  | EIGEN_DEVICE_FUNC AlignedBox | 
|  | transformed(const Transform<Scalar, AmbientDimAtCompileTime, Mode, Options>& transform) const { | 
|  | AlignedBox result(m_min, m_max); | 
|  | result.transform(transform); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template <typename NewScalarType> | 
|  | EIGEN_DEVICE_FUNC inline | 
|  | typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType, AmbientDimAtCompileTime> >::type | 
|  | cast() const { | 
|  | return typename internal::cast_return_type<AlignedBox, AlignedBox<NewScalarType, AmbientDimAtCompileTime> >::type( | 
|  | *this); | 
|  | } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template <typename OtherScalarType> | 
|  | EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox<OtherScalarType, AmbientDimAtCompileTime>& other) { | 
|  | m_min = (other.min)().template cast<Scalar>(); | 
|  | m_max = (other.max)().template cast<Scalar>(); | 
|  | } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, | 
|  | const RealScalar& prec = ScalarTraits::dummy_precision()) const { | 
|  | return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | VectorType m_min, m_max; | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, int AmbientDim> | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar, AmbientDim>::squaredExteriorDistance( | 
|  | const MatrixBase<Derived>& a_p) const { | 
|  | typename internal::nested_eval<Derived, 2 * AmbientDim>::type p(a_p.derived()); | 
|  | Scalar dist2(0); | 
|  | Scalar aux; | 
|  | for (Index k = 0; k < dim(); ++k) { | 
|  | if (m_min[k] > p[k]) { | 
|  | aux = m_min[k] - p[k]; | 
|  | dist2 += aux * aux; | 
|  | } else if (p[k] > m_max[k]) { | 
|  | aux = p[k] - m_max[k]; | 
|  | dist2 += aux * aux; | 
|  | } | 
|  | } | 
|  | return dist2; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int AmbientDim> | 
|  | EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar, AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const { | 
|  | Scalar dist2(0); | 
|  | Scalar aux; | 
|  | for (Index k = 0; k < dim(); ++k) { | 
|  | if (m_min[k] > b.m_max[k]) { | 
|  | aux = m_min[k] - b.m_max[k]; | 
|  | dist2 += aux * aux; | 
|  | } else if (b.m_min[k] > m_max[k]) { | 
|  | aux = b.m_min[k] - m_max[k]; | 
|  | dist2 += aux * aux; | 
|  | } | 
|  | } | 
|  | return dist2; | 
|  | } | 
|  |  | 
|  | /** \defgroup alignedboxtypedefs Global aligned box typedefs | 
|  | * | 
|  | * \ingroup Geometry_Module | 
|  | * | 
|  | * Eigen defines several typedef shortcuts for most common aligned box types. | 
|  | * | 
|  | * The general patterns are the following: | 
|  | * | 
|  | * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, | 
|  | * and where \c Type can be \c i for integer, \c f for float, \c d for double. | 
|  | * | 
|  | * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size | 
|  | * aligned box of floats. | 
|  | * | 
|  | * \sa class AlignedBox | 
|  | */ | 
|  |  | 
|  | #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ | 
|  | /** \ingroup alignedboxtypedefs */                            \ | 
|  | typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix; | 
|  |  | 
|  | #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ | 
|  | EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1)           \ | 
|  | EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2)           \ | 
|  | EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3)           \ | 
|  | EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4)           \ | 
|  | EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) | 
|  |  | 
|  | EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) | 
|  | EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) | 
|  | EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) | 
|  |  | 
|  | #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES | 
|  | #undef EIGEN_MAKE_TYPEDEFS | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_ALIGNEDBOX_H |