|  | // #define EIGEN_TAUCS_SUPPORT | 
|  | // #define EIGEN_CHOLMOD_SUPPORT | 
|  | #include <iostream> | 
|  | #include <Eigen/Sparse> | 
|  |  | 
|  | // g++ -DSIZE=10000 -DDENSITY=0.001  sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG   -DNBTRIES=1 -I | 
|  | // /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ | 
|  | // -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a | 
|  | // -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a | 
|  | // /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out | 
|  |  | 
|  | #define NOGMM | 
|  | #define NOMTL | 
|  |  | 
|  | #ifndef SIZE | 
|  | #define SIZE 10 | 
|  | #endif | 
|  |  | 
|  | #ifndef DENSITY | 
|  | #define DENSITY 0.01 | 
|  | #endif | 
|  |  | 
|  | #ifndef REPEAT | 
|  | #define REPEAT 1 | 
|  | #endif | 
|  |  | 
|  | #include "BenchSparseUtil.h" | 
|  |  | 
|  | #ifndef MINDENSITY | 
|  | #define MINDENSITY 0.0004 | 
|  | #endif | 
|  |  | 
|  | #ifndef NBTRIES | 
|  | #define NBTRIES 10 | 
|  | #endif | 
|  |  | 
|  | #define BENCH(X)                          \ | 
|  | timer.reset();                          \ | 
|  | for (int _j = 0; _j < NBTRIES; ++_j) {  \ | 
|  | timer.start();                        \ | 
|  | for (int _k = 0; _k < REPEAT; ++_k) { \ | 
|  | X                                   \ | 
|  | }                                     \ | 
|  | timer.stop();                         \ | 
|  | } | 
|  |  | 
|  | // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix; | 
|  | typedef SparseMatrix<Scalar, SelfAdjoint | LowerTriangular> EigenSparseSelfAdjointMatrix; | 
|  |  | 
|  | void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst) { | 
|  | dst.startFill(rows * cols * density); | 
|  | for (int j = 0; j < cols; j++) { | 
|  | dst.fill(j, j) = internal::random<Scalar>(10, 20); | 
|  | for (int i = j + 1; i < rows; i++) { | 
|  | Scalar v = (internal::random<float>(0, 1) < density) ? internal::random<Scalar>() : 0; | 
|  | if (v != 0) dst.fill(i, j) = v; | 
|  | } | 
|  | } | 
|  | dst.endFill(); | 
|  | } | 
|  |  | 
|  | #include <Eigen/Cholesky> | 
|  |  | 
|  | template <int Backend> | 
|  | void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0) { | 
|  | std::cout << name << "..." << std::flush; | 
|  | BenchTimer timer; | 
|  | timer.start(); | 
|  | SparseLLT<EigenSparseSelfAdjointMatrix, Backend> chol(sm1, flags); | 
|  | timer.stop(); | 
|  | std::cout << ":\t" << timer.value() << endl; | 
|  |  | 
|  | std::cout << "  nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n"; | 
|  | //   std::cout << "sparse\n" << chol.matrixL() << "%\n"; | 
|  | } | 
|  |  | 
|  | int main(int argc, char* argv[]) { | 
|  | int rows = SIZE; | 
|  | int cols = SIZE; | 
|  | float density = DENSITY; | 
|  | BenchTimer timer; | 
|  |  | 
|  | VectorXf b = VectorXf::Random(cols); | 
|  | VectorXf x = VectorXf::Random(cols); | 
|  |  | 
|  | bool densedone = false; | 
|  |  | 
|  | // for (float density = DENSITY; density>=MINDENSITY; density*=0.5) | 
|  | //   float density = 0.5; | 
|  | { | 
|  | EigenSparseSelfAdjointMatrix sm1(rows, cols); | 
|  | std::cout << "Generate sparse matrix (might take a while)...\n"; | 
|  | fillSpdMatrix(density, rows, cols, sm1); | 
|  | std::cout << "DONE\n\n"; | 
|  |  | 
|  | // dense matrices | 
|  | #ifdef DENSEMATRIX | 
|  | if (!densedone) { | 
|  | densedone = true; | 
|  | std::cout << "Eigen Dense\t" << density * 100 << "%\n"; | 
|  | DenseMatrix m1(rows, cols); | 
|  | eiToDense(sm1, m1); | 
|  | m1 = (m1 + m1.transpose()).eval(); | 
|  | m1.diagonal() *= 0.5; | 
|  |  | 
|  | //       BENCH(LLT<DenseMatrix> chol(m1);) | 
|  | //       std::cout << "dense:\t" << timer.value() << endl; | 
|  |  | 
|  | BenchTimer timer; | 
|  | timer.start(); | 
|  | LLT<DenseMatrix> chol(m1); | 
|  | timer.stop(); | 
|  | std::cout << "dense:\t" << timer.value() << endl; | 
|  | int count = 0; | 
|  | for (int j = 0; j < cols; ++j) | 
|  | for (int i = j; i < rows; ++i) | 
|  | if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i, j)), 0.1)) count++; | 
|  | std::cout << "dense: " | 
|  | << "nnz = " << count << "\n"; | 
|  | //       std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // eigen sparse matrices | 
|  | doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization); | 
|  |  | 
|  | #ifdef EIGEN_CHOLMOD_SUPPORT | 
|  | doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization); | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TAUCS_SUPPORT | 
|  | doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization); | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | // TAUCS | 
|  | { | 
|  | taucs_ccs_matrix A = sm1.asTaucsMatrix(); | 
|  |  | 
|  | //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);) | 
|  | //       BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));) | 
|  | //       std::cout << "taucs:\t" << timer.value() << endl; | 
|  |  | 
|  | taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0); | 
|  |  | 
|  | for (int j=0; j<cols; ++j) | 
|  | { | 
|  | for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) | 
|  | std::cout << chol->values.d[i] << " "; | 
|  | } | 
|  | } | 
|  |  | 
|  | // CHOLMOD | 
|  | #ifdef EIGEN_CHOLMOD_SUPPORT | 
|  | { | 
|  | cholmod_common c; | 
|  | cholmod_start (&c); | 
|  | cholmod_sparse A; | 
|  | cholmod_factor *L; | 
|  |  | 
|  | A = sm1.asCholmodMatrix(); | 
|  | BenchTimer timer; | 
|  | //       timer.reset(); | 
|  | timer.start(); | 
|  | std::vector<int> perm(cols); | 
|  | //       std::vector<int> set(ncols); | 
|  | for (int i=0; i<cols; ++i) | 
|  | perm[i] = i; | 
|  | //       c.nmethods = 1; | 
|  | //       c.method[0] = 1; | 
|  |  | 
|  | c.nmethods = 1; | 
|  | c.method [0].ordering = CHOLMOD_NATURAL; | 
|  | c.postorder = 0; | 
|  | c.final_ll = 1; | 
|  |  | 
|  | L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c); | 
|  | timer.stop(); | 
|  | std::cout << "cholmod/analyze:\t" << timer.value() << endl; | 
|  | timer.reset(); | 
|  | timer.start(); | 
|  | cholmod_factorize(&A, L, &c); | 
|  | timer.stop(); | 
|  | std::cout << "cholmod/factorize:\t" << timer.value() << endl; | 
|  |  | 
|  | cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c); | 
|  |  | 
|  | cholmod_print_factor(L, "Factors", &c); | 
|  |  | 
|  | cholmod_print_sparse(cholmat, "Chol", &c); | 
|  | cholmod_write_sparse(stdout, cholmat, 0, 0, &c); | 
|  | // | 
|  | //       cholmod_print_sparse(&A, "A", &c); | 
|  | //       cholmod_write_sparse(stdout, &A, 0, 0, &c); | 
|  |  | 
|  |  | 
|  | //       for (int j=0; j<cols; ++j) | 
|  | //       { | 
|  | //           for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) | 
|  | //             std::cout << chol->values.s[i] << " "; | 
|  | //       } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |