| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/SVD> | 
 |  | 
 | template <typename MatrixType> | 
 | void upperbidiag(const MatrixType& m) { | 
 |   const Index rows = m.rows(); | 
 |   const Index cols = m.cols(); | 
 |  | 
 |   typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> | 
 |       RealMatrixType; | 
 |   typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> | 
 |       TransposeMatrixType; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows, cols); | 
 |   internal::UpperBidiagonalization<MatrixType> ubd(a); | 
 |   RealMatrixType b(rows, cols); | 
 |   b.setZero(); | 
 |   b.block(0, 0, cols, cols) = ubd.bidiagonal(); | 
 |   MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint(); | 
 |   VERIFY_IS_APPROX(a, c); | 
 |   TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint(); | 
 |   VERIFY_IS_APPROX(a.adjoint(), d); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(upperbidiagonalization) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(upperbidiag(MatrixXf(3, 3))); | 
 |     CALL_SUBTEST_2(upperbidiag(MatrixXd(17, 12))); | 
 |     CALL_SUBTEST_3(upperbidiag(MatrixXcf(20, 20))); | 
 |     CALL_SUBTEST_4(upperbidiag(Matrix<std::complex<double>, Dynamic, Dynamic, RowMajor>(16, 15))); | 
 |     CALL_SUBTEST_5(upperbidiag(Matrix<float, 6, 4>())); | 
 |     CALL_SUBTEST_6(upperbidiag(Matrix<float, 5, 5>())); | 
 |     CALL_SUBTEST_7(upperbidiag(Matrix<double, 4, 3>())); | 
 |   } | 
 | } |