|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 David Harmon <dharmon@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H | 
|  | #define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H | 
|  |  | 
|  | #include "../../../../Eigen/Dense" | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  | template <typename Scalar, typename RealScalar> | 
|  | struct arpack_wrapper; | 
|  | template <typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> | 
|  | struct OP; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <typename MatrixType, typename MatrixSolver = SimplicialLLT<MatrixType>, bool BisSPD = false> | 
|  | class ArpackGeneralizedSelfAdjointEigenSolver { | 
|  | public: | 
|  | // typedef typename MatrixSolver::MatrixType MatrixType; | 
|  |  | 
|  | /** \brief Scalar type for matrices of type \p MatrixType. */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::Index Index; | 
|  |  | 
|  | /** \brief Real scalar type for \p MatrixType. | 
|  | * | 
|  | * This is just \c Scalar if #Scalar is real (e.g., \c float or | 
|  | * \c Scalar), and the type of the real part of \c Scalar if #Scalar is | 
|  | * complex. | 
|  | */ | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
|  | * | 
|  | * This is a column vector with entries of type #RealScalar. | 
|  | * The length of the vector is the size of \p nbrEigenvalues. | 
|  | */ | 
|  | typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * The default constructor is for cases in which the user intends to | 
|  | * perform decompositions via compute(). | 
|  | * | 
|  | */ | 
|  | ArpackGeneralizedSelfAdjointEigenSolver() | 
|  | : m_eivec(), | 
|  | m_eivalues(), | 
|  | m_isInitialized(false), | 
|  | m_eigenvectorsOk(false), | 
|  | m_nbrConverged(0), | 
|  | m_nbrIterations(0) {} | 
|  |  | 
|  | /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix. | 
|  | * | 
|  | * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will | 
|  | *    computed. By default, the upper triangular part is used, but can be changed | 
|  | *    through the template parameter. | 
|  | * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem. | 
|  | * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
|  | *    Must be less than the size of the input matrix, or an error is returned. | 
|  | * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
|  | *    respective meanings to find the largest magnitude , smallest magnitude, | 
|  | *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
|  | *    value can contain floating point value in string form, in which case the | 
|  | *    eigenvalues closest to this value will be found. | 
|  | * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
|  | * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
|  | *    means machine precision. | 
|  | * | 
|  | * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar) | 
|  | * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if | 
|  | * \p options equals #ComputeEigenvectors. | 
|  | * | 
|  | */ | 
|  | ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType &A, const MatrixType &B, Index nbrEigenvalues, | 
|  | std::string eigs_sigma = "LM", int options = ComputeEigenvectors, | 
|  | RealScalar tol = 0.0) | 
|  | : m_eivec(), | 
|  | m_eivalues(), | 
|  | m_isInitialized(false), | 
|  | m_eigenvectorsOk(false), | 
|  | m_nbrConverged(0), | 
|  | m_nbrIterations(0) { | 
|  | compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); | 
|  | } | 
|  |  | 
|  | /** \brief Constructor; computes eigenvalues of given matrix. | 
|  | * | 
|  | * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will | 
|  | *    computed. By default, the upper triangular part is used, but can be changed | 
|  | *    through the template parameter. | 
|  | * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
|  | *    Must be less than the size of the input matrix, or an error is returned. | 
|  | * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
|  | *    respective meanings to find the largest magnitude , smallest magnitude, | 
|  | *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
|  | *    value can contain floating point value in string form, in which case the | 
|  | *    eigenvalues closest to this value will be found. | 
|  | * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
|  | * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
|  | *    means machine precision. | 
|  | * | 
|  | * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar) | 
|  | * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if | 
|  | * \p options equals #ComputeEigenvectors. | 
|  | * | 
|  | */ | 
|  |  | 
|  | ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType &A, Index nbrEigenvalues, std::string eigs_sigma = "LM", | 
|  | int options = ComputeEigenvectors, RealScalar tol = 0.0) | 
|  | : m_eivec(), | 
|  | m_eivalues(), | 
|  | m_isInitialized(false), | 
|  | m_eigenvectorsOk(false), | 
|  | m_nbrConverged(0), | 
|  | m_nbrIterations(0) { | 
|  | compute(A, nbrEigenvalues, eigs_sigma, options, tol); | 
|  | } | 
|  |  | 
|  | /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library. | 
|  | * | 
|  | * \param[in]  A  Selfadjoint matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  B  Selfadjoint matrix for generalized eigenvalues. | 
|  | * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
|  | *    Must be less than the size of the input matrix, or an error is returned. | 
|  | * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
|  | *    respective meanings to find the largest magnitude , smallest magnitude, | 
|  | *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
|  | *    value can contain floating point value in string form, in which case the | 
|  | *    eigenvalues closest to this value will be found. | 
|  | * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
|  | * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
|  | *    means machine precision. | 
|  | * | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK.  The eigenvalues() | 
|  | * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors, | 
|  | * then the eigenvectors are also computed and can be retrieved by | 
|  | * calling eigenvectors(). | 
|  | * | 
|  | */ | 
|  | ArpackGeneralizedSelfAdjointEigenSolver &compute(const MatrixType &A, const MatrixType &B, Index nbrEigenvalues, | 
|  | std::string eigs_sigma = "LM", int options = ComputeEigenvectors, | 
|  | RealScalar tol = 0.0); | 
|  |  | 
|  | /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library. | 
|  | * | 
|  | * \param[in]  A  Selfadjoint matrix whose eigendecomposition is to be computed. | 
|  | * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute. | 
|  | *    Must be less than the size of the input matrix, or an error is returned. | 
|  | * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with | 
|  | *    respective meanings to find the largest magnitude , smallest magnitude, | 
|  | *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this | 
|  | *    value can contain floating point value in string form, in which case the | 
|  | *    eigenvalues closest to this value will be found. | 
|  | * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
|  | * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which | 
|  | *    means machine precision. | 
|  | * | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * This function computes the eigenvalues of \p A using ARPACK.  The eigenvalues() | 
|  | * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors, | 
|  | * then the eigenvectors are also computed and can be retrieved by | 
|  | * calling eigenvectors(). | 
|  | * | 
|  | */ | 
|  | ArpackGeneralizedSelfAdjointEigenSolver &compute(const MatrixType &A, Index nbrEigenvalues, | 
|  | std::string eigs_sigma = "LM", int options = ComputeEigenvectors, | 
|  | RealScalar tol = 0.0); | 
|  |  | 
|  | /** \brief Returns the eigenvectors of given matrix. | 
|  | * | 
|  | * \returns  A const reference to the matrix whose columns are the eigenvectors. | 
|  | * | 
|  | * \pre The eigenvectors have been computed before. | 
|  | * | 
|  | * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
|  | * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
|  | * eigenvectors are normalized to have (Euclidean) norm equal to one. If | 
|  | * this object was used to solve the eigenproblem for the selfadjoint | 
|  | * matrix \f$ A \f$, then the matrix returned by this function is the | 
|  | * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$. | 
|  | * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$ | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out | 
|  | * | 
|  | * \sa eigenvalues() | 
|  | */ | 
|  | const Matrix<Scalar, Dynamic, Dynamic> &eigenvectors() const { | 
|  | eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the eigenvalues of given matrix. | 
|  | * | 
|  | * \returns A const reference to the column vector containing the eigenvalues. | 
|  | * | 
|  | * \pre The eigenvalues have been computed before. | 
|  | * | 
|  | * The eigenvalues are repeated according to their algebraic multiplicity, | 
|  | * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
|  | * are sorted in increasing order. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out | 
|  | * | 
|  | * \sa eigenvectors(), MatrixBase::eigenvalues() | 
|  | */ | 
|  | const Matrix<Scalar, Dynamic, 1> &eigenvalues() const { | 
|  | eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); | 
|  | return m_eivalues; | 
|  | } | 
|  |  | 
|  | /** \brief Computes the positive-definite square root of the matrix. | 
|  | * | 
|  | * \returns the positive-definite square root of the matrix | 
|  | * | 
|  | * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
|  | * have been computed before. | 
|  | * | 
|  | * The square root of a positive-definite matrix \f$ A \f$ is the | 
|  | * positive-definite matrix whose square equals \f$ A \f$. This function | 
|  | * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the | 
|  | * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out | 
|  | * | 
|  | * \sa operatorInverseSqrt(), | 
|  | *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
|  | */ | 
|  | Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \brief Computes the inverse square root of the matrix. | 
|  | * | 
|  | * \returns the inverse positive-definite square root of the matrix | 
|  | * | 
|  | * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
|  | * have been computed before. | 
|  | * | 
|  | * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to | 
|  | * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is | 
|  | * cheaper than first computing the square root with operatorSqrt() and | 
|  | * then its inverse with MatrixBase::inverse(). | 
|  | * | 
|  | * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 
|  | * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out | 
|  | * | 
|  | * \sa operatorSqrt(), MatrixBase::inverse(), | 
|  | *     \ref MatrixFunctions_Module "MatrixFunctions Module" | 
|  | */ | 
|  | Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const { | 
|  | eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
|  | } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | size_t getNbrConvergedEigenValues() const { return m_nbrConverged; } | 
|  |  | 
|  | size_t getNbrIterations() const { return m_nbrIterations; } | 
|  |  | 
|  | protected: | 
|  | Matrix<Scalar, Dynamic, Dynamic> m_eivec; | 
|  | Matrix<Scalar, Dynamic, 1> m_eivalues; | 
|  | ComputationInfo m_info; | 
|  | bool m_isInitialized; | 
|  | bool m_eigenvectorsOk; | 
|  |  | 
|  | size_t m_nbrConverged; | 
|  | size_t m_nbrIterations; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, typename MatrixSolver, bool BisSPD> | 
|  | ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD> & | 
|  | ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>::compute(const MatrixType &A, | 
|  | Index nbrEigenvalues, | 
|  | std::string eigs_sigma, int options, | 
|  | RealScalar tol) { | 
|  | MatrixType B(0, 0); | 
|  | compute(A, B, nbrEigenvalues, eigs_sigma, options, tol); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, typename MatrixSolver, bool BisSPD> | 
|  | ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD> & | 
|  | ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>::compute(const MatrixType &A, | 
|  | const MatrixType &B, | 
|  | Index nbrEigenvalues, | 
|  | std::string eigs_sigma, int options, | 
|  | RealScalar tol) { | 
|  | eigen_assert(A.cols() == A.rows()); | 
|  | eigen_assert(B.cols() == B.rows()); | 
|  | eigen_assert(B.rows() == 0 || A.cols() == B.rows()); | 
|  | eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask && | 
|  | "invalid option parameter"); | 
|  |  | 
|  | bool isBempty = (B.rows() == 0) || (B.cols() == 0); | 
|  |  | 
|  | // For clarity, all parameters match their ARPACK name | 
|  | // | 
|  | // Always 0 on the first call | 
|  | // | 
|  | int ido = 0; | 
|  |  | 
|  | int n = (int)A.cols(); | 
|  |  | 
|  | // User options: "LA", "SA", "SM", "LM", "BE" | 
|  | // | 
|  | char whch[3] = "LM"; | 
|  |  | 
|  | // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 } | 
|  | // | 
|  | RealScalar sigma = 0.0; | 
|  |  | 
|  | if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) { | 
|  | eigs_sigma[0] = toupper(eigs_sigma[0]); | 
|  | eigs_sigma[1] = toupper(eigs_sigma[1]); | 
|  |  | 
|  | // In the following special case we're going to invert the problem, since solving | 
|  | // for larger magnitude is much much faster | 
|  | // i.e., if 'SM' is specified, we're going to really use 'LM', the default | 
|  | // | 
|  | if (eigs_sigma.substr(0, 2) != "SM") { | 
|  | whch[0] = eigs_sigma[0]; | 
|  | whch[1] = eigs_sigma[1]; | 
|  | } | 
|  | } else { | 
|  | eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!"); | 
|  |  | 
|  | // If it's not scalar values, then the user may be explicitly | 
|  | // specifying the sigma value to cluster the evs around | 
|  | // | 
|  | sigma = atof(eigs_sigma.c_str()); | 
|  |  | 
|  | // If atof fails, it returns 0.0, which is a fine default | 
|  | // | 
|  | } | 
|  |  | 
|  | // "I" means normal eigenvalue problem, "G" means generalized | 
|  | // | 
|  | char bmat[2] = "I"; | 
|  | if (eigs_sigma.substr(0, 2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD)) | 
|  | bmat[0] = 'G'; | 
|  |  | 
|  | // Now we determine the mode to use | 
|  | // | 
|  | int mode = (bmat[0] == 'G') + 1; | 
|  | if (eigs_sigma.substr(0, 2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))) { | 
|  | // We're going to use shift-and-invert mode, and basically find | 
|  | // the largest eigenvalues of the inverse operator | 
|  | // | 
|  | mode = 3; | 
|  | } | 
|  |  | 
|  | // The user-specified number of eigenvalues/vectors to compute | 
|  | // | 
|  | int nev = (int)nbrEigenvalues; | 
|  |  | 
|  | // Allocate space for ARPACK to store the residual | 
|  | // | 
|  | Scalar *resid = new Scalar[n]; | 
|  |  | 
|  | // Number of Lanczos vectors, must satisfy nev < ncv <= n | 
|  | // Note that this indicates that nev != n, and we cannot compute | 
|  | // all eigenvalues of a mtrix | 
|  | // | 
|  | int ncv = std::min(std::max(2 * nev, 20), n); | 
|  |  | 
|  | // The working n x ncv matrix, also store the final eigenvectors (if computed) | 
|  | // | 
|  | Scalar *v = new Scalar[n * ncv]; | 
|  | int ldv = n; | 
|  |  | 
|  | // Working space | 
|  | // | 
|  | Scalar *workd = new Scalar[3 * n]; | 
|  | int lworkl = ncv * ncv + 8 * ncv;  // Must be at least this length | 
|  | Scalar *workl = new Scalar[lworkl]; | 
|  |  | 
|  | int *iparam = new int[11]; | 
|  | iparam[0] = 1;  // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it | 
|  | iparam[2] = std::max(300, (int)std::ceil(2 * n / std::max(ncv, 1))); | 
|  | iparam[6] = mode;  // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert | 
|  |  | 
|  | // Used during reverse communicate to notify where arrays start | 
|  | // | 
|  | int *ipntr = new int[11]; | 
|  |  | 
|  | // Error codes are returned in here, initial value of 0 indicates a random initial | 
|  | // residual vector is used, any other values means resid contains the initial residual | 
|  | // vector, possibly from a previous run | 
|  | // | 
|  | int info = 0; | 
|  |  | 
|  | Scalar scale = 1.0; | 
|  | // if (!isBempty) | 
|  | //{ | 
|  | // Scalar scale = B.norm() / std::sqrt(n); | 
|  | // scale = std::pow(2, std::floor(std::log(scale+1))); | 
|  | ////M /= scale; | 
|  | // for (size_t i=0; i<(size_t)B.outerSize(); i++) | 
|  | //     for (typename MatrixType::InnerIterator it(B, i); it; ++it) | 
|  | //         it.valueRef() /= scale; | 
|  | // } | 
|  |  | 
|  | MatrixSolver OP; | 
|  | if (mode == 1 || mode == 2) { | 
|  | if (!isBempty) OP.compute(B); | 
|  | } else if (mode == 3) { | 
|  | if (sigma == 0.0) { | 
|  | OP.compute(A); | 
|  | } else { | 
|  | // Note: We will never enter here because sigma must be 0.0 | 
|  | // | 
|  | if (isBempty) { | 
|  | MatrixType AminusSigmaB(A); | 
|  | for (Index i = 0; i < A.rows(); ++i) AminusSigmaB.coeffRef(i, i) -= sigma; | 
|  |  | 
|  | OP.compute(AminusSigmaB); | 
|  | } else { | 
|  | MatrixType AminusSigmaB = A - sigma * B; | 
|  | OP.compute(AminusSigmaB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success) | 
|  | std::cout << "Error factoring matrix" << std::endl; | 
|  |  | 
|  | do { | 
|  | internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid, &ncv, v, &ldv, iparam, | 
|  | ipntr, workd, workl, &lworkl, &info); | 
|  |  | 
|  | if (ido == -1 || ido == 1) { | 
|  | Scalar *in = workd + ipntr[0] - 1; | 
|  | Scalar *out = workd + ipntr[1] - 1; | 
|  |  | 
|  | if (ido == 1 && mode != 2) { | 
|  | Scalar *out2 = workd + ipntr[2] - 1; | 
|  | if (isBempty || mode == 1) | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
|  | else | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
|  |  | 
|  | in = workd + ipntr[2] - 1; | 
|  | } | 
|  |  | 
|  | if (mode == 1) { | 
|  | if (isBempty) { | 
|  | // OP = A | 
|  | // | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
|  | } else { | 
|  | // OP = L^{-1}AL^{-T} | 
|  | // | 
|  | internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out); | 
|  | } | 
|  | } else if (mode == 2) { | 
|  | if (ido == 1) Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
|  |  | 
|  | // OP = B^{-1} A | 
|  | // | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
|  | } else if (mode == 3) { | 
|  | // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I) | 
|  | // The B * in is already computed and stored at in if ido == 1 | 
|  | // | 
|  | if (ido == 1 || isBempty) | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
|  | else | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
|  | } | 
|  | } else if (ido == 2) { | 
|  | Scalar *in = workd + ipntr[0] - 1; | 
|  | Scalar *out = workd + ipntr[1] - 1; | 
|  |  | 
|  | if (isBempty || mode == 1) | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
|  | else | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n); | 
|  | } | 
|  | } while (ido != 99); | 
|  |  | 
|  | if (info == 1) | 
|  | m_info = NoConvergence; | 
|  | else if (info == 3) | 
|  | m_info = NumericalIssue; | 
|  | else if (info < 0) | 
|  | m_info = InvalidInput; | 
|  | else if (info != 0) | 
|  | eigen_assert(false && "Unknown ARPACK return value!"); | 
|  | else { | 
|  | // Do we compute eigenvectors or not? | 
|  | // | 
|  | int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors; | 
|  |  | 
|  | // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK)) | 
|  | // | 
|  | char howmny[2] = "A"; | 
|  |  | 
|  | // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK) | 
|  | // | 
|  | int *select = new int[ncv]; | 
|  |  | 
|  | // Final eigenvalues | 
|  | // | 
|  | m_eivalues.resize(nev, 1); | 
|  |  | 
|  | internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv, &sigma, bmat, | 
|  | &n, whch, &nev, &tol, resid, &ncv, v, &ldv, iparam, ipntr, | 
|  | workd, workl, &lworkl, &info); | 
|  |  | 
|  | if (info == -14) | 
|  | m_info = NoConvergence; | 
|  | else if (info != 0) | 
|  | m_info = InvalidInput; | 
|  | else { | 
|  | if (rvec) { | 
|  | m_eivec.resize(A.rows(), nev); | 
|  | for (int i = 0; i < nev; i++) | 
|  | for (int j = 0; j < n; j++) m_eivec(j, i) = v[i * n + j] / scale; | 
|  |  | 
|  | if (mode == 1 && !isBempty && BisSPD) | 
|  | internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data()); | 
|  |  | 
|  | m_eigenvectorsOk = true; | 
|  | } | 
|  |  | 
|  | m_nbrIterations = iparam[2]; | 
|  | m_nbrConverged = iparam[4]; | 
|  |  | 
|  | m_info = Success; | 
|  | } | 
|  |  | 
|  | delete[] select; | 
|  | } | 
|  |  | 
|  | delete[] v; | 
|  | delete[] iparam; | 
|  | delete[] ipntr; | 
|  | delete[] workd; | 
|  | delete[] workl; | 
|  | delete[] resid; | 
|  |  | 
|  | m_isInitialized = true; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Single precision | 
|  | // | 
|  | extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, | 
|  | float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, | 
|  | int *info); | 
|  |  | 
|  | extern "C" void sseupd_(int *rvec, char *All, int *select, float *d, float *z, int *ldz, float *sigma, char *bmat, | 
|  | int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, | 
|  | int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *ierr); | 
|  |  | 
|  | // Double precision | 
|  | // | 
|  | extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, | 
|  | double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, | 
|  | int *info); | 
|  |  | 
|  | extern "C" void dseupd_(int *rvec, char *All, int *select, double *d, double *z, int *ldz, double *sigma, char *bmat, | 
|  | int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, | 
|  | int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *ierr); | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Scalar, typename RealScalar> | 
|  | struct arpack_wrapper { | 
|  | static inline void saupd(int *ido, char *bmat, int *n, char *which, int *nev, RealScalar *tol, Scalar *resid, | 
|  | int *ncv, Scalar *v, int *ldv, int *iparam, int *ipntr, Scalar *workd, Scalar *workl, | 
|  | int *lworkl, int *info) { | 
|  | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) | 
|  | } | 
|  |  | 
|  | static inline void seupd(int *rvec, char *All, int *select, Scalar *d, Scalar *z, int *ldz, RealScalar *sigma, | 
|  | char *bmat, int *n, char *which, int *nev, RealScalar *tol, Scalar *resid, int *ncv, | 
|  | Scalar *v, int *ldv, int *iparam, int *ipntr, Scalar *workd, Scalar *workl, int *lworkl, | 
|  | int *ierr) { | 
|  | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct arpack_wrapper<float, float> { | 
|  | static inline void saupd(int *ido, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, | 
|  | float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, | 
|  | int *info) { | 
|  | ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info); | 
|  | } | 
|  |  | 
|  | static inline void seupd(int *rvec, char *All, int *select, float *d, float *z, int *ldz, float *sigma, char *bmat, | 
|  | int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, | 
|  | int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *ierr) { | 
|  | sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, | 
|  | workl, lworkl, ierr); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct arpack_wrapper<double, double> { | 
|  | static inline void saupd(int *ido, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, | 
|  | double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, | 
|  | int *info) { | 
|  | dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info); | 
|  | } | 
|  |  | 
|  | static inline void seupd(int *rvec, char *All, int *select, double *d, double *z, int *ldz, double *sigma, char *bmat, | 
|  | int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, | 
|  | int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *ierr) { | 
|  | dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, | 
|  | workl, lworkl, ierr); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> | 
|  | struct OP { | 
|  | static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out); | 
|  | static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs); | 
|  | }; | 
|  |  | 
|  | template <typename MatrixSolver, typename MatrixType, typename Scalar> | 
|  | struct OP<MatrixSolver, MatrixType, Scalar, true> { | 
|  | static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out) { | 
|  | // OP = L^{-1} A L^{-T}  (B = LL^T) | 
|  | // | 
|  | // First solve L^T out = in | 
|  | // | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n)); | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n); | 
|  |  | 
|  | // Then compute out = A out | 
|  | // | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n); | 
|  |  | 
|  | // Then solve L out = out | 
|  | // | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n); | 
|  | Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n)); | 
|  | } | 
|  |  | 
|  | static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs) { | 
|  | // Solve L^T out = in | 
|  | // | 
|  | Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = | 
|  | OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k)); | 
|  | Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = | 
|  | OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename MatrixSolver, typename MatrixType, typename Scalar> | 
|  | struct OP<MatrixSolver, MatrixType, Scalar, false> { | 
|  | static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out) { | 
|  | eigen_assert(false && "Should never be in here..."); | 
|  | } | 
|  |  | 
|  | static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs) { | 
|  | eigen_assert(false && "Should never be in here..."); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H |