| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | 
 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // The algorithm of this class initially comes from MINPACK whose original authors are: | 
 | // Copyright Jorge More - Argonne National Laboratory | 
 | // Copyright Burt Garbow - Argonne National Laboratory | 
 | // Copyright Ken Hillstrom - Argonne National Laboratory | 
 | // | 
 | // This Source Code Form is subject to the terms of the Minpack license | 
 | // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_LEVENBERGMARQUARDT_H | 
 | #define EIGEN_LEVENBERGMARQUARDT_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 | namespace LevenbergMarquardtSpace { | 
 | enum Status { | 
 |   NotStarted = -2, | 
 |   Running = -1, | 
 |   ImproperInputParameters = 0, | 
 |   RelativeReductionTooSmall = 1, | 
 |   RelativeErrorTooSmall = 2, | 
 |   RelativeErrorAndReductionTooSmall = 3, | 
 |   CosinusTooSmall = 4, | 
 |   TooManyFunctionEvaluation = 5, | 
 |   FtolTooSmall = 6, | 
 |   XtolTooSmall = 7, | 
 |   GtolTooSmall = 8, | 
 |   UserAsked = 9 | 
 | }; | 
 | } | 
 |  | 
 | template <typename Scalar_, int NX = Dynamic, int NY = Dynamic> | 
 | struct DenseFunctor { | 
 |   typedef Scalar_ Scalar; | 
 |   enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; | 
 |   typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType; | 
 |   typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType; | 
 |   typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
 |   typedef ColPivHouseholderQR<JacobianType> QRSolver; | 
 |   const int m_inputs, m_values; | 
 |  | 
 |   DenseFunctor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
 |   DenseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {} | 
 |  | 
 |   int inputs() const { return m_inputs; } | 
 |   int values() const { return m_values; } | 
 |  | 
 |   // int operator()(const InputType &x, ValueType& fvec) { } | 
 |   //  should be defined in derived classes | 
 |  | 
 |   // int df(const InputType &x, JacobianType& fjac) { } | 
 |   //  should be defined in derived classes | 
 | }; | 
 |  | 
 | template <typename Scalar_, typename Index_> | 
 | struct SparseFunctor { | 
 |   typedef Scalar_ Scalar; | 
 |   typedef Index_ Index; | 
 |   typedef Matrix<Scalar, Dynamic, 1> InputType; | 
 |   typedef Matrix<Scalar, Dynamic, 1> ValueType; | 
 |   typedef SparseMatrix<Scalar, ColMajor, Index> JacobianType; | 
 |   typedef SparseQR<JacobianType, COLAMDOrdering<int> > QRSolver; | 
 |   enum { InputsAtCompileTime = Dynamic, ValuesAtCompileTime = Dynamic }; | 
 |  | 
 |   SparseFunctor(int inputs, int values) : m_inputs(inputs), m_values(values) {} | 
 |  | 
 |   int inputs() const { return m_inputs; } | 
 |   int values() const { return m_values; } | 
 |  | 
 |   const int m_inputs, m_values; | 
 |   // int operator()(const InputType &x, ValueType& fvec) { } | 
 |   //  to be defined in the functor | 
 |  | 
 |   // int df(const InputType &x, JacobianType& fjac) { } | 
 |   //  to be defined in the functor if no automatic differentiation | 
 | }; | 
 | namespace internal { | 
 | template <typename QRSolver, typename VectorType> | 
 | void lmpar2(const QRSolver &qr, const VectorType &diag, const VectorType &qtb, typename VectorType::Scalar m_delta, | 
 |             typename VectorType::Scalar &par, VectorType &x); | 
 | } | 
 | /** | 
 |  * \ingroup NonLinearOptimization_Module | 
 |  * \brief Performs non linear optimization over a non-linear function, | 
 |  * using a variant of the Levenberg Marquardt algorithm. | 
 |  * | 
 |  * Check wikipedia for more information. | 
 |  * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm | 
 |  */ | 
 | template <typename FunctorType_> | 
 | class LevenbergMarquardt : internal::no_assignment_operator { | 
 |  public: | 
 |   typedef FunctorType_ FunctorType; | 
 |   typedef typename FunctorType::QRSolver QRSolver; | 
 |   typedef typename FunctorType::JacobianType JacobianType; | 
 |   typedef typename JacobianType::Scalar Scalar; | 
 |   typedef typename JacobianType::RealScalar RealScalar; | 
 |   typedef typename QRSolver::StorageIndex PermIndex; | 
 |   typedef Matrix<Scalar, Dynamic, 1> FVectorType; | 
 |   typedef PermutationMatrix<Dynamic, Dynamic, int> PermutationType; | 
 |  | 
 |  public: | 
 |   LevenbergMarquardt(FunctorType &functor) | 
 |       : m_functor(functor), | 
 |         m_nfev(0), | 
 |         m_njev(0), | 
 |         m_fnorm(0.0), | 
 |         m_gnorm(0), | 
 |         m_isInitialized(false), | 
 |         m_info(InvalidInput) { | 
 |     resetParameters(); | 
 |     m_useExternalScaling = false; | 
 |   } | 
 |  | 
 |   LevenbergMarquardtSpace::Status minimize(FVectorType &x); | 
 |   LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x); | 
 |   LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x); | 
 |   LevenbergMarquardtSpace::Status lmder1(FVectorType &x, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())); | 
 |   static LevenbergMarquardtSpace::Status lmdif1(FunctorType &functor, FVectorType &x, Index *nfev, | 
 |                                                 const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())); | 
 |  | 
 |   /** Sets the default parameters */ | 
 |   void resetParameters() { | 
 |     using std::sqrt; | 
 |  | 
 |     m_factor = 100.; | 
 |     m_maxfev = 400; | 
 |     m_ftol = sqrt(NumTraits<RealScalar>::epsilon()); | 
 |     m_xtol = sqrt(NumTraits<RealScalar>::epsilon()); | 
 |     m_gtol = 0.; | 
 |     m_epsfcn = 0.; | 
 |   } | 
 |  | 
 |   /** Sets the tolerance for the norm of the solution vector*/ | 
 |   void setXtol(RealScalar xtol) { m_xtol = xtol; } | 
 |  | 
 |   /** Sets the tolerance for the norm of the vector function*/ | 
 |   void setFtol(RealScalar ftol) { m_ftol = ftol; } | 
 |  | 
 |   /** Sets the tolerance for the norm of the gradient of the error vector*/ | 
 |   void setGtol(RealScalar gtol) { m_gtol = gtol; } | 
 |  | 
 |   /** Sets the step bound for the diagonal shift */ | 
 |   void setFactor(RealScalar factor) { m_factor = factor; } | 
 |  | 
 |   /** Sets the error precision  */ | 
 |   void setEpsilon(RealScalar epsfcn) { m_epsfcn = epsfcn; } | 
 |  | 
 |   /** Sets the maximum number of function evaluation */ | 
 |   void setMaxfev(Index maxfev) { m_maxfev = maxfev; } | 
 |  | 
 |   /** Use an external Scaling. If set to true, pass a nonzero diagonal to diag() */ | 
 |   void setExternalScaling(bool value) { m_useExternalScaling = value; } | 
 |  | 
 |   /** \returns the tolerance for the norm of the solution vector */ | 
 |   RealScalar xtol() const { return m_xtol; } | 
 |  | 
 |   /** \returns the tolerance for the norm of the vector function */ | 
 |   RealScalar ftol() const { return m_ftol; } | 
 |  | 
 |   /** \returns the tolerance for the norm of the gradient of the error vector */ | 
 |   RealScalar gtol() const { return m_gtol; } | 
 |  | 
 |   /** \returns the step bound for the diagonal shift */ | 
 |   RealScalar factor() const { return m_factor; } | 
 |  | 
 |   /** \returns the error precision */ | 
 |   RealScalar epsilon() const { return m_epsfcn; } | 
 |  | 
 |   /** \returns the maximum number of function evaluation */ | 
 |   Index maxfev() const { return m_maxfev; } | 
 |  | 
 |   /** \returns a reference to the diagonal of the jacobian */ | 
 |   FVectorType &diag() { return m_diag; } | 
 |  | 
 |   /** \returns the number of iterations performed */ | 
 |   Index iterations() { return m_iter; } | 
 |  | 
 |   /** \returns the number of functions evaluation */ | 
 |   Index nfev() { return m_nfev; } | 
 |  | 
 |   /** \returns the number of jacobian evaluation */ | 
 |   Index njev() { return m_njev; } | 
 |  | 
 |   /** \returns the norm of current vector function */ | 
 |   RealScalar fnorm() { return m_fnorm; } | 
 |  | 
 |   /** \returns the norm of the gradient of the error */ | 
 |   RealScalar gnorm() { return m_gnorm; } | 
 |  | 
 |   /** \returns the LevenbergMarquardt parameter */ | 
 |   RealScalar lm_param(void) { return m_par; } | 
 |  | 
 |   /** \returns a reference to the  current vector function | 
 |    */ | 
 |   FVectorType &fvec() { return m_fvec; } | 
 |  | 
 |   /** \returns a reference to the matrix where the current Jacobian matrix is stored | 
 |    */ | 
 |   JacobianType &jacobian() { return m_fjac; } | 
 |  | 
 |   /** \returns a reference to the triangular matrix R from the QR of the jacobian matrix. | 
 |    * \sa jacobian() | 
 |    */ | 
 |   JacobianType &matrixR() { return m_rfactor; } | 
 |  | 
 |   /** the permutation used in the QR factorization | 
 |    */ | 
 |   PermutationType permutation() { return m_permutation; } | 
 |  | 
 |   /** | 
 |    * \brief Reports whether the minimization was successful | 
 |    * \returns \c Success if the minimization was successful, | 
 |    *         \c NumericalIssue if a numerical problem arises during the | 
 |    *          minimization process, for example during the QR factorization | 
 |    *         \c NoConvergence if the minimization did not converge after | 
 |    *          the maximum number of function evaluation allowed | 
 |    *          \c InvalidInput if the input matrix is invalid | 
 |    */ | 
 |   ComputationInfo info() const { return m_info; } | 
 |  | 
 |  private: | 
 |   JacobianType m_fjac; | 
 |   JacobianType m_rfactor;  // The triangular matrix R from the QR of the jacobian matrix m_fjac | 
 |   FunctorType &m_functor; | 
 |   FVectorType m_fvec, m_qtf, m_diag; | 
 |   Index n; | 
 |   Index m; | 
 |   Index m_nfev; | 
 |   Index m_njev; | 
 |   RealScalar m_fnorm;   // Norm of the current vector function | 
 |   RealScalar m_gnorm;   // Norm of the gradient of the error | 
 |   RealScalar m_factor;  // | 
 |   Index m_maxfev;       // Maximum number of function evaluation | 
 |   RealScalar m_ftol;    // Tolerance in the norm of the vector function | 
 |   RealScalar m_xtol;    // | 
 |   RealScalar m_gtol;    // tolerance of the norm of the error gradient | 
 |   RealScalar m_epsfcn;  // | 
 |   Index m_iter;         // Number of iterations performed | 
 |   RealScalar m_delta; | 
 |   bool m_useExternalScaling; | 
 |   PermutationType m_permutation; | 
 |   FVectorType m_wa1, m_wa2, m_wa3, m_wa4;  // Temporary vectors | 
 |   RealScalar m_par; | 
 |   bool m_isInitialized;  // Check whether the minimization step has been called | 
 |   ComputationInfo m_info; | 
 | }; | 
 |  | 
 | template <typename FunctorType> | 
 | LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::minimize(FVectorType &x) { | 
 |   LevenbergMarquardtSpace::Status status = minimizeInit(x); | 
 |   if (status == LevenbergMarquardtSpace::ImproperInputParameters) { | 
 |     m_isInitialized = true; | 
 |     return status; | 
 |   } | 
 |   do { | 
 |     //       std::cout << " uv " << x.transpose() << "\n"; | 
 |     status = minimizeOneStep(x); | 
 |   } while (status == LevenbergMarquardtSpace::Running); | 
 |   m_isInitialized = true; | 
 |   return status; | 
 | } | 
 |  | 
 | template <typename FunctorType> | 
 | LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::minimizeInit(FVectorType &x) { | 
 |   n = x.size(); | 
 |   m = m_functor.values(); | 
 |  | 
 |   m_wa1.resize(n); | 
 |   m_wa2.resize(n); | 
 |   m_wa3.resize(n); | 
 |   m_wa4.resize(m); | 
 |   m_fvec.resize(m); | 
 |   // FIXME Sparse Case : Allocate space for the jacobian | 
 |   m_fjac.resize(m, n); | 
 |   //     m_fjac.reserve(VectorXi::Constant(n,5)); // FIXME Find a better alternative | 
 |   if (!m_useExternalScaling) m_diag.resize(n); | 
 |   eigen_assert((!m_useExternalScaling || m_diag.size() == n) && | 
 |                "When m_useExternalScaling is set, the caller must provide a valid 'm_diag'"); | 
 |   m_qtf.resize(n); | 
 |  | 
 |   /* Function Body */ | 
 |   m_nfev = 0; | 
 |   m_njev = 0; | 
 |  | 
 |   /*     check the input parameters for errors. */ | 
 |   if (n <= 0 || m < n || m_ftol < 0. || m_xtol < 0. || m_gtol < 0. || m_maxfev <= 0 || m_factor <= 0.) { | 
 |     m_info = InvalidInput; | 
 |     return LevenbergMarquardtSpace::ImproperInputParameters; | 
 |   } | 
 |  | 
 |   if (m_useExternalScaling) | 
 |     for (Index j = 0; j < n; ++j) | 
 |       if (m_diag[j] <= 0.) { | 
 |         m_info = InvalidInput; | 
 |         return LevenbergMarquardtSpace::ImproperInputParameters; | 
 |       } | 
 |  | 
 |   /*     evaluate the function at the starting point */ | 
 |   /*     and calculate its norm. */ | 
 |   m_nfev = 1; | 
 |   if (m_functor(x, m_fvec) < 0) return LevenbergMarquardtSpace::UserAsked; | 
 |   m_fnorm = m_fvec.stableNorm(); | 
 |  | 
 |   /*     initialize levenberg-marquardt parameter and iteration counter. */ | 
 |   m_par = 0.; | 
 |   m_iter = 1; | 
 |  | 
 |   return LevenbergMarquardtSpace::NotStarted; | 
 | } | 
 |  | 
 | template <typename FunctorType> | 
 | LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::lmder1(FVectorType &x, const Scalar tol) { | 
 |   n = x.size(); | 
 |   m = m_functor.values(); | 
 |  | 
 |   /* check the input parameters for errors. */ | 
 |   if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; | 
 |  | 
 |   resetParameters(); | 
 |   m_ftol = tol; | 
 |   m_xtol = tol; | 
 |   m_maxfev = 100 * (n + 1); | 
 |  | 
 |   return minimize(x); | 
 | } | 
 |  | 
 | template <typename FunctorType> | 
 | LevenbergMarquardtSpace::Status LevenbergMarquardt<FunctorType>::lmdif1(FunctorType &functor, FVectorType &x, | 
 |                                                                         Index *nfev, const Scalar tol) { | 
 |   Index n = x.size(); | 
 |   Index m = functor.values(); | 
 |  | 
 |   /* check the input parameters for errors. */ | 
 |   if (n <= 0 || m < n || tol < 0.) return LevenbergMarquardtSpace::ImproperInputParameters; | 
 |  | 
 |   NumericalDiff<FunctorType> numDiff(functor); | 
 |   // embedded LevenbergMarquardt | 
 |   LevenbergMarquardt<NumericalDiff<FunctorType> > lm(numDiff); | 
 |   lm.setFtol(tol); | 
 |   lm.setXtol(tol); | 
 |   lm.setMaxfev(200 * (n + 1)); | 
 |  | 
 |   LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x)); | 
 |   if (nfev) *nfev = lm.nfev(); | 
 |   return info; | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_LEVENBERGMARQUARDT_H |