| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2013 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SPARSEBLOCKMATRIX_H | 
 | #define EIGEN_SPARSEBLOCKMATRIX_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 | /** \ingroup SparseCore_Module | 
 |  * | 
 |  * \class BlockSparseMatrix | 
 |  * | 
 |  * \brief A versatile sparse matrix representation where each element is a block | 
 |  * | 
 |  * This class provides routines to manipulate block sparse matrices stored in a | 
 |  * BSR-like representation. There are two main types : | 
 |  * | 
 |  * 1. All blocks have the same number of rows and columns, called block size | 
 |  * in the following. In this case, if this block size is known at compile time, | 
 |  * it can be given as a template parameter like | 
 |  * \code | 
 |  * BlockSparseMatrix<Scalar, 3, ColMajor> bmat(b_rows, b_cols); | 
 |  * \endcode | 
 |  * Here, bmat is a b_rows x b_cols block sparse matrix | 
 |  * where each coefficient is a 3x3 dense matrix. | 
 |  * If the block size is fixed but will be given at runtime, | 
 |  * \code | 
 |  * BlockSparseMatrix<Scalar, Dynamic, ColMajor> bmat(b_rows, b_cols); | 
 |  * bmat.setBlockSize(block_size); | 
 |  * \endcode | 
 |  * | 
 |  * 2. The second case is for variable-block sparse matrices. | 
 |  * Here each block has its own dimensions. The only restriction is that all the blocks | 
 |  * in a row (resp. a column) should have the same number of rows (resp. of columns). | 
 |  * It is thus required in this case to describe the layout of the matrix by calling | 
 |  * setBlockLayout(rowBlocks, colBlocks). | 
 |  * | 
 |  * In any of the previous case, the matrix can be filled by calling setFromTriplets(). | 
 |  * A regular sparse matrix can be converted to a block sparse matrix and vice versa. | 
 |  * It is obviously required to describe the block layout beforehand by calling either | 
 |  * setBlockSize() for fixed-size blocks or setBlockLayout for variable-size blocks. | 
 |  * | 
 |  * \tparam Scalar_ The Scalar type | 
 |  * \tparam _BlockAtCompileTime The block layout option. It takes the following values | 
 |  * Dynamic : block size known at runtime | 
 |  * a numeric number : fixed-size block known at compile time | 
 |  */ | 
 | template <typename Scalar_, int _BlockAtCompileTime = Dynamic, int Options_ = ColMajor, typename StorageIndex_ = int> | 
 | class BlockSparseMatrix; | 
 |  | 
 | template <typename BlockSparseMatrixT> | 
 | class BlockSparseMatrixView; | 
 |  | 
 | namespace internal { | 
 | template <typename Scalar_, int _BlockAtCompileTime, int Options_, typename Index_> | 
 | struct traits<BlockSparseMatrix<Scalar_, _BlockAtCompileTime, Options_, Index_> > { | 
 |   typedef Scalar_ Scalar; | 
 |   typedef Index_ Index; | 
 |   typedef Sparse StorageKind;  // FIXME Where is it used ?? | 
 |   typedef MatrixXpr XprKind; | 
 |   enum { | 
 |     RowsAtCompileTime = Dynamic, | 
 |     ColsAtCompileTime = Dynamic, | 
 |     MaxRowsAtCompileTime = Dynamic, | 
 |     MaxColsAtCompileTime = Dynamic, | 
 |     BlockSize = _BlockAtCompileTime, | 
 |     Flags = Options_ | NestByRefBit | LvalueBit, | 
 |     CoeffReadCost = NumTraits<Scalar>::ReadCost, | 
 |     SupportedAccessPatterns = InnerRandomAccessPattern | 
 |   }; | 
 | }; | 
 | template <typename BlockSparseMatrixT> | 
 | struct traits<BlockSparseMatrixView<BlockSparseMatrixT> > { | 
 |   typedef Ref< | 
 |       Matrix<typename BlockSparseMatrixT::Scalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > | 
 |       Scalar; | 
 |   typedef Ref< | 
 |       Matrix<typename BlockSparseMatrixT::RealScalar, BlockSparseMatrixT::BlockSize, BlockSparseMatrixT::BlockSize> > | 
 |       RealScalar; | 
 | }; | 
 |  | 
 | // Function object to sort a triplet list | 
 | template <typename Iterator, bool IsColMajor> | 
 | struct TripletComp { | 
 |   typedef typename Iterator::value_type Triplet; | 
 |   bool operator()(const Triplet& a, const Triplet& b) { | 
 |     if (IsColMajor) | 
 |       return ((a.col() == b.col() && a.row() < b.row()) || (a.col() < b.col())); | 
 |     else | 
 |       return ((a.row() == b.row() && a.col() < b.col()) || (a.row() < b.row())); | 
 |   } | 
 | }; | 
 | }  // end namespace internal | 
 |  | 
 | /* Proxy to view the block sparse matrix as a regular sparse matrix */ | 
 | template <typename BlockSparseMatrixT> | 
 | class BlockSparseMatrixView : public SparseMatrixBase<BlockSparseMatrixT> { | 
 |  public: | 
 |   typedef Ref<typename BlockSparseMatrixT::BlockScalar> Scalar; | 
 |   typedef Ref<typename BlockSparseMatrixT::BlockRealScalar> RealScalar; | 
 |   typedef typename BlockSparseMatrixT::Index Index; | 
 |   typedef BlockSparseMatrixT Nested; | 
 |   enum { | 
 |     Flags = BlockSparseMatrixT::Options, | 
 |     Options = BlockSparseMatrixT::Options, | 
 |     RowsAtCompileTime = BlockSparseMatrixT::RowsAtCompileTime, | 
 |     ColsAtCompileTime = BlockSparseMatrixT::ColsAtCompileTime, | 
 |     MaxColsAtCompileTime = BlockSparseMatrixT::MaxColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = BlockSparseMatrixT::MaxRowsAtCompileTime | 
 |   }; | 
 |  | 
 |  public: | 
 |   BlockSparseMatrixView(const BlockSparseMatrixT& spblockmat) : m_spblockmat(spblockmat) {} | 
 |  | 
 |   Index outerSize() const { return (Flags & RowMajorBit) == 1 ? this->rows() : this->cols(); } | 
 |   Index cols() const { return m_spblockmat.blockCols(); } | 
 |   Index rows() const { return m_spblockmat.blockRows(); } | 
 |   Scalar coeff(Index row, Index col) { return m_spblockmat.coeff(row, col); } | 
 |   Scalar coeffRef(Index row, Index col) { return m_spblockmat.coeffRef(row, col); } | 
 |   // Wrapper to iterate over all blocks | 
 |   class InnerIterator : public BlockSparseMatrixT::BlockInnerIterator { | 
 |    public: | 
 |     InnerIterator(const BlockSparseMatrixView& mat, Index outer) | 
 |         : BlockSparseMatrixT::BlockInnerIterator(mat.m_spblockmat, outer) {} | 
 |   }; | 
 |  | 
 |  protected: | 
 |   const BlockSparseMatrixT& m_spblockmat; | 
 | }; | 
 |  | 
 | // Proxy to view a regular vector as a block vector | 
 | template <typename BlockSparseMatrixT, typename VectorType> | 
 | class BlockVectorView { | 
 |  public: | 
 |   enum { | 
 |     BlockSize = BlockSparseMatrixT::BlockSize, | 
 |     ColsAtCompileTime = VectorType::ColsAtCompileTime, | 
 |     RowsAtCompileTime = VectorType::RowsAtCompileTime, | 
 |     Flags = VectorType::Flags | 
 |   }; | 
 |   typedef Ref<const Matrix<typename BlockSparseMatrixT::Scalar, (RowsAtCompileTime == 1) ? 1 : BlockSize, | 
 |                            (ColsAtCompileTime == 1) ? 1 : BlockSize> > | 
 |       Scalar; | 
 |   typedef typename BlockSparseMatrixT::Index Index; | 
 |  | 
 |  public: | 
 |   BlockVectorView(const BlockSparseMatrixT& spblockmat, const VectorType& vec) : m_spblockmat(spblockmat), m_vec(vec) {} | 
 |   inline Index cols() const { return m_vec.cols(); } | 
 |   inline Index size() const { return m_spblockmat.blockRows(); } | 
 |   inline Scalar coeff(Index bi) const { | 
 |     Index startRow = m_spblockmat.blockRowsIndex(bi); | 
 |     Index rowSize = m_spblockmat.blockRowsIndex(bi + 1) - startRow; | 
 |     return m_vec.middleRows(startRow, rowSize); | 
 |   } | 
 |   inline Scalar coeff(Index bi, Index j) const { | 
 |     Index startRow = m_spblockmat.blockRowsIndex(bi); | 
 |     Index rowSize = m_spblockmat.blockRowsIndex(bi + 1) - startRow; | 
 |     return m_vec.block(startRow, j, rowSize, 1); | 
 |   } | 
 |  | 
 |  protected: | 
 |   const BlockSparseMatrixT& m_spblockmat; | 
 |   const VectorType& m_vec; | 
 | }; | 
 |  | 
 | template <typename VectorType, typename Index> | 
 | class BlockVectorReturn; | 
 |  | 
 | // Proxy to view a regular vector as a block vector | 
 | template <typename BlockSparseMatrixT, typename VectorType> | 
 | class BlockVectorReturn { | 
 |  public: | 
 |   enum { | 
 |     ColsAtCompileTime = VectorType::ColsAtCompileTime, | 
 |     RowsAtCompileTime = VectorType::RowsAtCompileTime, | 
 |     Flags = VectorType::Flags | 
 |   }; | 
 |   typedef Ref<Matrix<typename VectorType::Scalar, RowsAtCompileTime, ColsAtCompileTime> > Scalar; | 
 |   typedef typename BlockSparseMatrixT::Index Index; | 
 |  | 
 |  public: | 
 |   BlockVectorReturn(const BlockSparseMatrixT& spblockmat, VectorType& vec) : m_spblockmat(spblockmat), m_vec(vec) {} | 
 |   inline Index size() const { return m_spblockmat.blockRows(); } | 
 |   inline Scalar coeffRef(Index bi) { | 
 |     Index startRow = m_spblockmat.blockRowsIndex(bi); | 
 |     Index rowSize = m_spblockmat.blockRowsIndex(bi + 1) - startRow; | 
 |     return m_vec.middleRows(startRow, rowSize); | 
 |   } | 
 |   inline Scalar coeffRef(Index bi, Index j) { | 
 |     Index startRow = m_spblockmat.blockRowsIndex(bi); | 
 |     Index rowSize = m_spblockmat.blockRowsIndex(bi + 1) - startRow; | 
 |     return m_vec.block(startRow, j, rowSize, 1); | 
 |   } | 
 |  | 
 |  protected: | 
 |   const BlockSparseMatrixT& m_spblockmat; | 
 |   VectorType& m_vec; | 
 | }; | 
 |  | 
 | // Block version of the sparse dense product | 
 | template <typename Lhs, typename Rhs> | 
 | class BlockSparseTimeDenseProduct; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename BlockSparseMatrixT, typename VecType> | 
 | struct traits<BlockSparseTimeDenseProduct<BlockSparseMatrixT, VecType> > { | 
 |   typedef Dense StorageKind; | 
 |   typedef MatrixXpr XprKind; | 
 |   typedef typename BlockSparseMatrixT::Scalar Scalar; | 
 |   typedef typename BlockSparseMatrixT::Index Index; | 
 |   enum { | 
 |     RowsAtCompileTime = Dynamic, | 
 |     ColsAtCompileTime = Dynamic, | 
 |     MaxRowsAtCompileTime = Dynamic, | 
 |     MaxColsAtCompileTime = Dynamic, | 
 |     Flags = 0, | 
 |     CoeffReadCost = internal::traits<BlockSparseMatrixT>::CoeffReadCost | 
 |   }; | 
 | }; | 
 | }  // end namespace internal | 
 |  | 
 | template <typename Lhs, typename Rhs> | 
 | class BlockSparseTimeDenseProduct : public ProductBase<BlockSparseTimeDenseProduct<Lhs, Rhs>, Lhs, Rhs> { | 
 |  public: | 
 |   EIGEN_PRODUCT_PUBLIC_INTERFACE(BlockSparseTimeDenseProduct) | 
 |  | 
 |   BlockSparseTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs, rhs) {} | 
 |  | 
 |   template <typename Dest> | 
 |   void scaleAndAddTo(Dest& dest, const typename Rhs::Scalar& alpha) const { | 
 |     BlockVectorReturn<Lhs, Dest> tmpDest(m_lhs, dest); | 
 |     internal::sparse_time_dense_product(BlockSparseMatrixView<Lhs>(m_lhs), BlockVectorView<Lhs, Rhs>(m_lhs, m_rhs), | 
 |                                         tmpDest, alpha); | 
 |   } | 
 |  | 
 |  private: | 
 |   BlockSparseTimeDenseProduct& operator=(const BlockSparseTimeDenseProduct&); | 
 | }; | 
 |  | 
 | template <typename Scalar_, int _BlockAtCompileTime, int Options_, typename StorageIndex_> | 
 | class BlockSparseMatrix | 
 |     : public SparseMatrixBase<BlockSparseMatrix<Scalar_, _BlockAtCompileTime, Options_, StorageIndex_> > { | 
 |  public: | 
 |   typedef Scalar_ Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef StorageIndex_ StorageIndex; | 
 |   typedef | 
 |       typename internal::ref_selector<BlockSparseMatrix<Scalar_, _BlockAtCompileTime, Options_, StorageIndex_> >::type | 
 |           Nested; | 
 |  | 
 |   enum { | 
 |     Options = Options_, | 
 |     Flags = Options, | 
 |     BlockSize = _BlockAtCompileTime, | 
 |     RowsAtCompileTime = Dynamic, | 
 |     ColsAtCompileTime = Dynamic, | 
 |     MaxRowsAtCompileTime = Dynamic, | 
 |     MaxColsAtCompileTime = Dynamic, | 
 |     IsVectorAtCompileTime = 0, | 
 |     IsColMajor = Flags & RowMajorBit ? 0 : 1 | 
 |   }; | 
 |   typedef Matrix<Scalar, _BlockAtCompileTime, _BlockAtCompileTime, IsColMajor ? ColMajor : RowMajor> BlockScalar; | 
 |   typedef Matrix<RealScalar, _BlockAtCompileTime, _BlockAtCompileTime, IsColMajor ? ColMajor : RowMajor> | 
 |       BlockRealScalar; | 
 |   typedef std::conditional_t<_BlockAtCompileTime == Dynamic, Scalar, BlockScalar> BlockScalarReturnType; | 
 |   typedef BlockSparseMatrix<Scalar, BlockSize, IsColMajor ? ColMajor : RowMajor, StorageIndex> PlainObject; | 
 |  | 
 |  public: | 
 |   // Default constructor | 
 |   BlockSparseMatrix() | 
 |       : m_innerBSize(0), | 
 |         m_outerBSize(0), | 
 |         m_innerOffset(0), | 
 |         m_outerOffset(0), | 
 |         m_nonzerosblocks(0), | 
 |         m_values(0), | 
 |         m_blockPtr(0), | 
 |         m_indices(0), | 
 |         m_outerIndex(0), | 
 |         m_blockSize(BlockSize) {} | 
 |  | 
 |   /** | 
 |    * \brief Construct and resize | 
 |    * | 
 |    */ | 
 |   BlockSparseMatrix(Index brow, Index bcol) | 
 |       : m_innerBSize(IsColMajor ? brow : bcol), | 
 |         m_outerBSize(IsColMajor ? bcol : brow), | 
 |         m_innerOffset(0), | 
 |         m_outerOffset(0), | 
 |         m_nonzerosblocks(0), | 
 |         m_values(0), | 
 |         m_blockPtr(0), | 
 |         m_indices(0), | 
 |         m_outerIndex(0), | 
 |         m_blockSize(BlockSize) {} | 
 |  | 
 |   /** | 
 |    * \brief Copy-constructor | 
 |    */ | 
 |   BlockSparseMatrix(const BlockSparseMatrix& other) | 
 |       : m_innerBSize(other.m_innerBSize), | 
 |         m_outerBSize(other.m_outerBSize), | 
 |         m_nonzerosblocks(other.m_nonzerosblocks), | 
 |         m_nonzeros(other.m_nonzeros), | 
 |         m_blockPtr(0), | 
 |         m_blockSize(other.m_blockSize) { | 
 |     // should we allow copying between variable-size blocks and fixed-size blocks ?? | 
 |     eigen_assert(m_blockSize == BlockSize && " CAN NOT COPY BETWEEN FIXED-SIZE AND VARIABLE-SIZE BLOCKS"); | 
 |  | 
 |     std::copy(other.m_innerOffset, other.m_innerOffset + m_innerBSize + 1, m_innerOffset); | 
 |     std::copy(other.m_outerOffset, other.m_outerOffset + m_outerBSize + 1, m_outerOffset); | 
 |     std::copy(other.m_values, other.m_values + m_nonzeros, m_values); | 
 |  | 
 |     if (m_blockSize != Dynamic) std::copy(other.m_blockPtr, other.m_blockPtr + m_nonzerosblocks, m_blockPtr); | 
 |  | 
 |     std::copy(other.m_indices, other.m_indices + m_nonzerosblocks, m_indices); | 
 |     std::copy(other.m_outerIndex, other.m_outerIndex + m_outerBSize, m_outerIndex); | 
 |   } | 
 |  | 
 |   friend void swap(BlockSparseMatrix& first, BlockSparseMatrix& second) { | 
 |     std::swap(first.m_innerBSize, second.m_innerBSize); | 
 |     std::swap(first.m_outerBSize, second.m_outerBSize); | 
 |     std::swap(first.m_innerOffset, second.m_innerOffset); | 
 |     std::swap(first.m_outerOffset, second.m_outerOffset); | 
 |     std::swap(first.m_nonzerosblocks, second.m_nonzerosblocks); | 
 |     std::swap(first.m_nonzeros, second.m_nonzeros); | 
 |     std::swap(first.m_values, second.m_values); | 
 |     std::swap(first.m_blockPtr, second.m_blockPtr); | 
 |     std::swap(first.m_indices, second.m_indices); | 
 |     std::swap(first.m_outerIndex, second.m_outerIndex); | 
 |     std::swap(first.m_BlockSize, second.m_blockSize); | 
 |   } | 
 |  | 
 |   BlockSparseMatrix& operator=(BlockSparseMatrix other) { | 
 |     // Copy-and-swap paradigm ... avoid leaked data if thrown | 
 |     swap(*this, other); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Destructor | 
 |   ~BlockSparseMatrix() { | 
 |     delete[] m_outerIndex; | 
 |     delete[] m_innerOffset; | 
 |     delete[] m_outerOffset; | 
 |     delete[] m_indices; | 
 |     delete[] m_blockPtr; | 
 |     delete[] m_values; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Constructor from a sparse matrix | 
 |    * | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   inline BlockSparseMatrix(const MatrixType& spmat) : m_blockSize(BlockSize) { | 
 |     EIGEN_STATIC_ASSERT((m_blockSize != Dynamic), THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE); | 
 |  | 
 |     *this = spmat; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Assignment from a sparse matrix with the same storage order | 
 |    * | 
 |    * Convert from a sparse matrix to block sparse matrix. | 
 |    * \warning Before calling this function, tt is necessary to call | 
 |    * either setBlockLayout() (matrices with variable-size blocks) | 
 |    * or setBlockSize() (for fixed-size blocks). | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   inline BlockSparseMatrix& operator=(const MatrixType& spmat) { | 
 |     eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) && | 
 |                  "Trying to assign to a zero-size matrix, call resize() first"); | 
 |     eigen_assert(((MatrixType::Options & RowMajorBit) != IsColMajor) && "Wrong storage order"); | 
 |     typedef SparseMatrix<bool, MatrixType::Options, typename MatrixType::Index> MatrixPatternType; | 
 |     MatrixPatternType blockPattern(blockRows(), blockCols()); | 
 |     m_nonzeros = 0; | 
 |  | 
 |     // First, compute the number of nonzero blocks and their locations | 
 |     for (StorageIndex bj = 0; bj < m_outerBSize; ++bj) { | 
 |       // Browse each outer block and compute the structure | 
 |       std::vector<bool> nzblocksFlag(m_innerBSize, false);  // Record the existing blocks | 
 |       blockPattern.startVec(bj); | 
 |       for (StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj + 1); ++j) { | 
 |         typename MatrixType::InnerIterator it_spmat(spmat, j); | 
 |         for (; it_spmat; ++it_spmat) { | 
 |           StorageIndex bi = innerToBlock(it_spmat.index());  // Index of the current nonzero block | 
 |           if (!nzblocksFlag[bi]) { | 
 |             // Save the index of this nonzero block | 
 |             nzblocksFlag[bi] = true; | 
 |             blockPattern.insertBackByOuterInnerUnordered(bj, bi) = true; | 
 |             // Compute the total number of nonzeros (including explicit zeros in blocks) | 
 |             m_nonzeros += blockOuterSize(bj) * blockInnerSize(bi); | 
 |           } | 
 |         } | 
 |       }  // end current outer block | 
 |     } | 
 |     blockPattern.finalize(); | 
 |  | 
 |     // Allocate the internal arrays | 
 |     setBlockStructure(blockPattern); | 
 |  | 
 |     for (StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0); | 
 |     for (StorageIndex bj = 0; bj < m_outerBSize; ++bj) { | 
 |       // Now copy the values | 
 |       for (StorageIndex j = blockOuterIndex(bj); j < blockOuterIndex(bj + 1); ++j) { | 
 |         // Browse the outer block column by column (for column-major matrices) | 
 |         typename MatrixType::InnerIterator it_spmat(spmat, j); | 
 |         for (; it_spmat; ++it_spmat) { | 
 |           StorageIndex idx = 0;                              // Position of this block in the column block | 
 |           StorageIndex bi = innerToBlock(it_spmat.index());  // Index of the current nonzero block | 
 |           // Go to the inner block where this element belongs to | 
 |           while (bi > m_indices[m_outerIndex[bj] + idx]) ++idx;  // Not expensive for ordered blocks | 
 |           StorageIndex idxVal;  // Get the right position in the array of values for this element | 
 |           if (m_blockSize == Dynamic) { | 
 |             // Offset from all blocks before ... | 
 |             idxVal = m_blockPtr[m_outerIndex[bj] + idx]; | 
 |             // ... and offset inside the block | 
 |             idxVal += (j - blockOuterIndex(bj)) * blockOuterSize(bj) + it_spmat.index() - m_innerOffset[bi]; | 
 |           } else { | 
 |             // All blocks before | 
 |             idxVal = (m_outerIndex[bj] + idx) * m_blockSize * m_blockSize; | 
 |             // inside the block | 
 |             idxVal += (j - blockOuterIndex(bj)) * m_blockSize + (it_spmat.index() % m_blockSize); | 
 |           } | 
 |           // Insert the value | 
 |           m_values[idxVal] = it_spmat.value(); | 
 |         }  // end of this column | 
 |       }    // end of this block | 
 |     }      // end of this outer block | 
 |  | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Set the nonzero block pattern of the matrix | 
 |    * | 
 |    * Given a sparse matrix describing the nonzero block pattern, | 
 |    * this function prepares the internal pointers for values. | 
 |    * After calling this function, any *nonzero* block (bi, bj) can be set | 
 |    * with a simple call to coeffRef(bi,bj). | 
 |    * | 
 |    * | 
 |    * \warning Before calling this function, tt is necessary to call | 
 |    * either setBlockLayout() (matrices with variable-size blocks) | 
 |    * or setBlockSize() (for fixed-size blocks). | 
 |    * | 
 |    * \param blockPattern Sparse matrix of boolean elements describing the block structure | 
 |    * | 
 |    * \sa setBlockLayout() \sa setBlockSize() | 
 |    */ | 
 |   template <typename MatrixType> | 
 |   void setBlockStructure(const MatrixType& blockPattern) { | 
 |     resize(blockPattern.rows(), blockPattern.cols()); | 
 |     reserve(blockPattern.nonZeros()); | 
 |  | 
 |     // Browse the block pattern and set up the various pointers | 
 |     m_outerIndex[0] = 0; | 
 |     if (m_blockSize == Dynamic) m_blockPtr[0] = 0; | 
 |     for (StorageIndex nz = 0; nz < m_nonzeros; ++nz) m_values[nz] = Scalar(0); | 
 |     for (StorageIndex bj = 0; bj < m_outerBSize; ++bj) { | 
 |       // Browse each outer block | 
 |  | 
 |       // First, copy and save the indices of nonzero blocks | 
 |       // FIXME : find a way to avoid this ... | 
 |       std::vector<int> nzBlockIdx; | 
 |       typename MatrixType::InnerIterator it(blockPattern, bj); | 
 |       for (; it; ++it) { | 
 |         nzBlockIdx.push_back(it.index()); | 
 |       } | 
 |       std::sort(nzBlockIdx.begin(), nzBlockIdx.end()); | 
 |  | 
 |       // Now, fill block indices and (eventually) pointers to blocks | 
 |       for (StorageIndex idx = 0; idx < nzBlockIdx.size(); ++idx) { | 
 |         StorageIndex offset = m_outerIndex[bj] + idx;  // offset in m_indices | 
 |         m_indices[offset] = nzBlockIdx[idx]; | 
 |         if (m_blockSize == Dynamic) | 
 |           m_blockPtr[offset] = m_blockPtr[offset - 1] + blockInnerSize(nzBlockIdx[idx]) * blockOuterSize(bj); | 
 |         // There is no blockPtr for fixed-size blocks... not needed !??? | 
 |       } | 
 |       // Save the pointer to the next outer block | 
 |       m_outerIndex[bj + 1] = m_outerIndex[bj] + nzBlockIdx.size(); | 
 |     } | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Set the number of rows and columns blocks | 
 |    */ | 
 |   inline void resize(Index brow, Index bcol) { | 
 |     m_innerBSize = IsColMajor ? brow : bcol; | 
 |     m_outerBSize = IsColMajor ? bcol : brow; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief set the block size at runtime for fixed-size block layout | 
 |    * | 
 |    * Call this only for fixed-size blocks | 
 |    */ | 
 |   inline void setBlockSize(Index blockSize) { m_blockSize = blockSize; } | 
 |  | 
 |   /** | 
 |    * \brief Set the row and column block layouts, | 
 |    * | 
 |    * This function set the size of each row and column block. | 
 |    * So this function should be used only for blocks with variable size. | 
 |    * \param rowBlocks : Number of rows per row block | 
 |    * \param colBlocks : Number of columns per column block | 
 |    * \sa resize(), setBlockSize() | 
 |    */ | 
 |   inline void setBlockLayout(const VectorXi& rowBlocks, const VectorXi& colBlocks) { | 
 |     const VectorXi& innerBlocks = IsColMajor ? rowBlocks : colBlocks; | 
 |     const VectorXi& outerBlocks = IsColMajor ? colBlocks : rowBlocks; | 
 |     eigen_assert(m_innerBSize == innerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS"); | 
 |     eigen_assert(m_outerBSize == outerBlocks.size() && "CHECK THE NUMBER OF ROW OR COLUMN BLOCKS"); | 
 |     m_outerBSize = outerBlocks.size(); | 
 |     //  starting index of blocks... cumulative sums | 
 |     m_innerOffset = new StorageIndex[m_innerBSize + 1]; | 
 |     m_outerOffset = new StorageIndex[m_outerBSize + 1]; | 
 |     m_innerOffset[0] = 0; | 
 |     m_outerOffset[0] = 0; | 
 |     std::partial_sum(&innerBlocks[0], &innerBlocks[m_innerBSize - 1] + 1, &m_innerOffset[1]); | 
 |     std::partial_sum(&outerBlocks[0], &outerBlocks[m_outerBSize - 1] + 1, &m_outerOffset[1]); | 
 |  | 
 |     // Compute the total number of nonzeros | 
 |     m_nonzeros = 0; | 
 |     for (StorageIndex bj = 0; bj < m_outerBSize; ++bj) | 
 |       for (StorageIndex bi = 0; bi < m_innerBSize; ++bi) m_nonzeros += outerBlocks[bj] * innerBlocks[bi]; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Allocate the internal array of pointers to blocks and their inner indices | 
 |    * | 
 |    * \note For fixed-size blocks, call setBlockSize() to set the block. | 
 |    * And For variable-size blocks, call setBlockLayout() before using this function | 
 |    * | 
 |    * \param nonzerosblocks Number of nonzero blocks. The total number of nonzeros is | 
 |    * is computed in setBlockLayout() for variable-size blocks | 
 |    * \sa setBlockSize() | 
 |    */ | 
 |   inline void reserve(const Index nonzerosblocks) { | 
 |     eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) && | 
 |                  "TRYING TO RESERVE ZERO-SIZE MATRICES, CALL resize() first"); | 
 |  | 
 |     // FIXME Should free if already allocated | 
 |     m_outerIndex = new StorageIndex[m_outerBSize + 1]; | 
 |  | 
 |     m_nonzerosblocks = nonzerosblocks; | 
 |     if (m_blockSize != Dynamic) { | 
 |       m_nonzeros = nonzerosblocks * (m_blockSize * m_blockSize); | 
 |       m_blockPtr = 0; | 
 |     } else { | 
 |       // m_nonzeros  is already computed in setBlockLayout() | 
 |       m_blockPtr = new StorageIndex[m_nonzerosblocks + 1]; | 
 |     } | 
 |     m_indices = new StorageIndex[m_nonzerosblocks + 1]; | 
 |     m_values = new Scalar[m_nonzeros]; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Fill values in a matrix  from a triplet list. | 
 |    * | 
 |    * Each triplet item has a block stored in an Eigen dense matrix. | 
 |    * The InputIterator class should provide the functions row(), col() and value() | 
 |    * | 
 |    * \note For fixed-size blocks, call setBlockSize() before this function. | 
 |    * | 
 |    * FIXME Do not accept duplicates | 
 |    */ | 
 |   template <typename InputIterator> | 
 |   void setFromTriplets(const InputIterator& begin, const InputIterator& end) { | 
 |     eigen_assert((m_innerBSize != 0 && m_outerBSize != 0) && "ZERO BLOCKS, PLEASE CALL resize() before"); | 
 |  | 
 |     /* First, sort the triplet list | 
 |      * FIXME This can be unnecessarily expensive since only the inner indices have to be sorted | 
 |      * The best approach is like in SparseMatrix::setFromTriplets() | 
 |      */ | 
 |     internal::TripletComp<InputIterator, IsColMajor> tripletcomp; | 
 |     std::sort(begin, end, tripletcomp); | 
 |  | 
 |     /* Count the number of rows and column blocks, | 
 |      * and the number of nonzero blocks per outer dimension | 
 |      */ | 
 |     VectorXi rowBlocks(m_innerBSize);  // Size of each block row | 
 |     VectorXi colBlocks(m_outerBSize);  // Size of each block column | 
 |     rowBlocks.setZero(); | 
 |     colBlocks.setZero(); | 
 |     VectorXi nzblock_outer(m_outerBSize);  // Number of nz blocks per outer vector | 
 |     VectorXi nz_outer(m_outerBSize);       // Number of nz per outer vector...for variable-size blocks | 
 |     nzblock_outer.setZero(); | 
 |     nz_outer.setZero(); | 
 |     for (InputIterator it(begin); it != end; ++it) { | 
 |       eigen_assert(it->row() >= 0 && it->row() < this->blockRows() && it->col() >= 0 && it->col() < this->blockCols()); | 
 |       eigen_assert((it->value().rows() == it->value().cols() && (it->value().rows() == m_blockSize)) || | 
 |                    (m_blockSize == Dynamic)); | 
 |  | 
 |       if (m_blockSize == Dynamic) { | 
 |         eigen_assert((rowBlocks[it->row()] == 0 || rowBlocks[it->row()] == it->value().rows()) && | 
 |                      "NON CORRESPONDING SIZES FOR ROW BLOCKS"); | 
 |         eigen_assert((colBlocks[it->col()] == 0 || colBlocks[it->col()] == it->value().cols()) && | 
 |                      "NON CORRESPONDING SIZES FOR COLUMN BLOCKS"); | 
 |         rowBlocks[it->row()] = it->value().rows(); | 
 |         colBlocks[it->col()] = it->value().cols(); | 
 |       } | 
 |       nz_outer(IsColMajor ? it->col() : it->row()) += it->value().rows() * it->value().cols(); | 
 |       nzblock_outer(IsColMajor ? it->col() : it->row())++; | 
 |     } | 
 |     // Allocate member arrays | 
 |     if (m_blockSize == Dynamic) setBlockLayout(rowBlocks, colBlocks); | 
 |     StorageIndex nzblocks = nzblock_outer.sum(); | 
 |     reserve(nzblocks); | 
 |  | 
 |     // Temporary markers | 
 |     VectorXi block_id(m_outerBSize);  // To be used as a block marker during insertion | 
 |  | 
 |     // Setup outer index pointers and markers | 
 |     m_outerIndex[0] = 0; | 
 |     if (m_blockSize == Dynamic) m_blockPtr[0] = 0; | 
 |     for (StorageIndex bj = 0; bj < m_outerBSize; ++bj) { | 
 |       m_outerIndex[bj + 1] = m_outerIndex[bj] + nzblock_outer(bj); | 
 |       block_id(bj) = m_outerIndex[bj]; | 
 |       if (m_blockSize == Dynamic) { | 
 |         m_blockPtr[m_outerIndex[bj + 1]] = m_blockPtr[m_outerIndex[bj]] + nz_outer(bj); | 
 |       } | 
 |     } | 
 |  | 
 |     // Fill the matrix | 
 |     for (InputIterator it(begin); it != end; ++it) { | 
 |       StorageIndex outer = IsColMajor ? it->col() : it->row(); | 
 |       StorageIndex inner = IsColMajor ? it->row() : it->col(); | 
 |       m_indices[block_id(outer)] = inner; | 
 |       StorageIndex block_size = it->value().rows() * it->value().cols(); | 
 |       StorageIndex nz_marker = blockPtr(block_id[outer]); | 
 |       memcpy(&(m_values[nz_marker]), it->value().data(), block_size * sizeof(Scalar)); | 
 |       if (m_blockSize == Dynamic) { | 
 |         m_blockPtr[block_id(outer) + 1] = m_blockPtr[block_id(outer)] + block_size; | 
 |       } | 
 |       block_id(outer)++; | 
 |     } | 
 |  | 
 |     // An alternative when the outer indices are sorted...no need to use an array of markers | 
 |     //      for(Index bcol = 0; bcol < m_outerBSize; ++bcol) | 
 |     //      { | 
 |     //      Index id = 0, id_nz = 0, id_nzblock = 0; | 
 |     //      for(InputIterator it(begin); it!=end; ++it) | 
 |     //      { | 
 |     //        while (id<bcol) // one pass should do the job unless there are empty columns | 
 |     //        { | 
 |     //          id++; | 
 |     //          m_outerIndex[id+1]=m_outerIndex[id]; | 
 |     //        } | 
 |     //        m_outerIndex[id+1] += 1; | 
 |     //        m_indices[id_nzblock]=brow; | 
 |     //        Index block_size = it->value().rows()*it->value().cols(); | 
 |     //        m_blockPtr[id_nzblock+1] = m_blockPtr[id_nzblock] + block_size; | 
 |     //        id_nzblock++; | 
 |     //        memcpy(&(m_values[id_nz]),it->value().data(), block_size*sizeof(Scalar)); | 
 |     //        id_nz += block_size; | 
 |     //      } | 
 |     //      while(id < m_outerBSize-1) // Empty columns at the end | 
 |     //      { | 
 |     //        id++; | 
 |     //        m_outerIndex[id+1]=m_outerIndex[id]; | 
 |     //      } | 
 |     //      } | 
 |   } | 
 |  | 
 |   /** | 
 |    * \returns the number of rows | 
 |    */ | 
 |   inline Index rows() const { | 
 |     //      return blockRows(); | 
 |     return (IsColMajor ? innerSize() : outerSize()); | 
 |   } | 
 |  | 
 |   /** | 
 |    * \returns the number of cols | 
 |    */ | 
 |   inline Index cols() const { | 
 |     //      return blockCols(); | 
 |     return (IsColMajor ? outerSize() : innerSize()); | 
 |   } | 
 |  | 
 |   inline Index innerSize() const { | 
 |     if (m_blockSize == Dynamic) | 
 |       return m_innerOffset[m_innerBSize]; | 
 |     else | 
 |       return (m_innerBSize * m_blockSize); | 
 |   } | 
 |  | 
 |   inline Index outerSize() const { | 
 |     if (m_blockSize == Dynamic) | 
 |       return m_outerOffset[m_outerBSize]; | 
 |     else | 
 |       return (m_outerBSize * m_blockSize); | 
 |   } | 
 |   /** \returns the number of rows grouped by blocks */ | 
 |   inline Index blockRows() const { return (IsColMajor ? m_innerBSize : m_outerBSize); } | 
 |   /** \returns the number of columns grouped by blocks */ | 
 |   inline Index blockCols() const { return (IsColMajor ? m_outerBSize : m_innerBSize); } | 
 |  | 
 |   inline Index outerBlocks() const { return m_outerBSize; } | 
 |   inline Index innerBlocks() const { return m_innerBSize; } | 
 |  | 
 |   /** \returns the block index where outer belongs to */ | 
 |   inline Index outerToBlock(Index outer) const { | 
 |     eigen_assert(outer < outerSize() && "OUTER INDEX OUT OF BOUNDS"); | 
 |  | 
 |     if (m_blockSize != Dynamic) return (outer / m_blockSize);  // Integer division | 
 |  | 
 |     StorageIndex b_outer = 0; | 
 |     while (m_outerOffset[b_outer] <= outer) ++b_outer; | 
 |     return b_outer - 1; | 
 |   } | 
 |   /** \returns  the block index where inner belongs to */ | 
 |   inline Index innerToBlock(Index inner) const { | 
 |     eigen_assert(inner < innerSize() && "OUTER INDEX OUT OF BOUNDS"); | 
 |  | 
 |     if (m_blockSize != Dynamic) return (inner / m_blockSize);  // Integer division | 
 |  | 
 |     StorageIndex b_inner = 0; | 
 |     while (m_innerOffset[b_inner] <= inner) ++b_inner; | 
 |     return b_inner - 1; | 
 |   } | 
 |  | 
 |   /** | 
 |    *\returns a reference to the (i,j) block as an Eigen Dense Matrix | 
 |    */ | 
 |   Ref<BlockScalar> coeffRef(Index brow, Index bcol) { | 
 |     eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS"); | 
 |     eigen_assert(bcol < blockCols() && "BLOCK nzblocksFlagCOLUMN OUT OF BOUNDS"); | 
 |  | 
 |     StorageIndex rsize = IsColMajor ? blockInnerSize(brow) : blockOuterSize(bcol); | 
 |     StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow); | 
 |     StorageIndex inner = IsColMajor ? brow : bcol; | 
 |     StorageIndex outer = IsColMajor ? bcol : brow; | 
 |     StorageIndex offset = m_outerIndex[outer]; | 
 |     while (offset < m_outerIndex[outer + 1] && m_indices[offset] != inner) offset++; | 
 |     if (m_indices[offset] == inner) { | 
 |       return Map<BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize); | 
 |     } else { | 
 |       // FIXME the block does not exist, Insert it !!!!!!!!! | 
 |       eigen_assert("DYNAMIC INSERTION IS NOT YET SUPPORTED"); | 
 |     } | 
 |   } | 
 |  | 
 |   /** | 
 |    * \returns the value of the (i,j) block as an Eigen Dense Matrix | 
 |    */ | 
 |   Map<const BlockScalar> coeff(Index brow, Index bcol) const { | 
 |     eigen_assert(brow < blockRows() && "BLOCK ROW INDEX OUT OF BOUNDS"); | 
 |     eigen_assert(bcol < blockCols() && "BLOCK COLUMN OUT OF BOUNDS"); | 
 |  | 
 |     StorageIndex rsize = IsColMajor ? blockInnerSize(brow) : blockOuterSize(bcol); | 
 |     StorageIndex csize = IsColMajor ? blockOuterSize(bcol) : blockInnerSize(brow); | 
 |     StorageIndex inner = IsColMajor ? brow : bcol; | 
 |     StorageIndex outer = IsColMajor ? bcol : brow; | 
 |     StorageIndex offset = m_outerIndex[outer]; | 
 |     while (offset < m_outerIndex[outer + 1] && m_indices[offset] != inner) offset++; | 
 |     if (m_indices[offset] == inner) { | 
 |       return Map<const BlockScalar>(&(m_values[blockPtr(offset)]), rsize, csize); | 
 |     } else | 
 |       //        return BlockScalar::Zero(rsize, csize); | 
 |       eigen_assert("NOT YET SUPPORTED"); | 
 |   } | 
 |  | 
 |   // Block Matrix times vector product | 
 |   template <typename VecType> | 
 |   BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType> operator*(const VecType& lhs) const { | 
 |     return BlockSparseTimeDenseProduct<BlockSparseMatrix, VecType>(*this, lhs); | 
 |   } | 
 |  | 
 |   /** \returns the number of nonzero blocks */ | 
 |   inline Index nonZerosBlocks() const { return m_nonzerosblocks; } | 
 |   /** \returns the total number of nonzero elements, including eventual explicit zeros in blocks */ | 
 |   inline Index nonZeros() const { return m_nonzeros; } | 
 |  | 
 |   inline BlockScalarReturnType* valuePtr() { return static_cast<BlockScalarReturnType*>(m_values); } | 
 |   //    inline Scalar *valuePtr(){ return m_values; } | 
 |   inline StorageIndex* innerIndexPtr() { return m_indices; } | 
 |   inline const StorageIndex* innerIndexPtr() const { return m_indices; } | 
 |   inline StorageIndex* outerIndexPtr() { return m_outerIndex; } | 
 |   inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } | 
 |  | 
 |   /** \brief for compatibility purposes with the SparseMatrix class */ | 
 |   inline bool isCompressed() const { return true; } | 
 |   /** | 
 |    * \returns the starting index of the bi row block | 
 |    */ | 
 |   inline Index blockRowsIndex(Index bi) const { return IsColMajor ? blockInnerIndex(bi) : blockOuterIndex(bi); } | 
 |  | 
 |   /** | 
 |    * \returns the starting index of the bj col block | 
 |    */ | 
 |   inline Index blockColsIndex(Index bj) const { return IsColMajor ? blockOuterIndex(bj) : blockInnerIndex(bj); } | 
 |  | 
 |   inline Index blockOuterIndex(Index bj) const { | 
 |     return (m_blockSize == Dynamic) ? m_outerOffset[bj] : (bj * m_blockSize); | 
 |   } | 
 |   inline Index blockInnerIndex(Index bi) const { | 
 |     return (m_blockSize == Dynamic) ? m_innerOffset[bi] : (bi * m_blockSize); | 
 |   } | 
 |  | 
 |   // Not needed ??? | 
 |   inline Index blockInnerSize(Index bi) const { | 
 |     return (m_blockSize == Dynamic) ? (m_innerOffset[bi + 1] - m_innerOffset[bi]) : m_blockSize; | 
 |   } | 
 |   inline Index blockOuterSize(Index bj) const { | 
 |     return (m_blockSize == Dynamic) ? (m_outerOffset[bj + 1] - m_outerOffset[bj]) : m_blockSize; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \brief Browse the matrix by outer index | 
 |    */ | 
 |   class InnerIterator;  // Browse column by column | 
 |  | 
 |   /** | 
 |    * \brief Browse the matrix by block outer index | 
 |    */ | 
 |   class BlockInnerIterator;  // Browse block by block | 
 |  | 
 |   friend std::ostream& operator<<(std::ostream& s, const BlockSparseMatrix& m) { | 
 |     for (StorageIndex j = 0; j < m.outerBlocks(); ++j) { | 
 |       BlockInnerIterator itb(m, j); | 
 |       for (; itb; ++itb) { | 
 |         s << "(" << itb.row() << ", " << itb.col() << ")\n"; | 
 |         s << itb.value() << "\n"; | 
 |       } | 
 |     } | 
 |     s << std::endl; | 
 |     return s; | 
 |   } | 
 |  | 
 |   /** | 
 |    * \returns the starting position of the block \p id in the array of values | 
 |    */ | 
 |   Index blockPtr(Index id) const { | 
 |     if (m_blockSize == Dynamic) | 
 |       return m_blockPtr[id]; | 
 |     else | 
 |       return id * m_blockSize * m_blockSize; | 
 |     // return blockDynIdx(id, std::conditional_t<(BlockSize==Dynamic), internal::true_type, internal::false_type>()); | 
 |   } | 
 |  | 
 |  protected: | 
 |   //    inline Index blockDynIdx(Index id, internal::true_type) const | 
 |   //    { | 
 |   //      return m_blockPtr[id]; | 
 |   //    } | 
 |   //    inline Index blockDynIdx(Index id, internal::false_type) const | 
 |   //    { | 
 |   //      return id * BlockSize * BlockSize; | 
 |   //    } | 
 |  | 
 |   // To be implemented | 
 |   // Insert a block at a particular location... need to make a room for that | 
 |   Map<BlockScalar> insert(Index brow, Index bcol); | 
 |  | 
 |   Index m_innerBSize;           // Number of block rows | 
 |   Index m_outerBSize;           // Number of block columns | 
 |   StorageIndex* m_innerOffset;  // Starting index of each inner block (size m_innerBSize+1) | 
 |   StorageIndex* m_outerOffset;  // Starting index of each outer block (size m_outerBSize+1) | 
 |   Index m_nonzerosblocks;       // Total nonzeros blocks (lower than  m_innerBSize x m_outerBSize) | 
 |   Index m_nonzeros;             // Total nonzeros elements | 
 |   Scalar* m_values;             // Values stored block column after block column (size m_nonzeros) | 
 |   StorageIndex* m_blockPtr;     // Pointer to the beginning of each block in m_values, size m_nonzeroblocks ... null for | 
 |                                 // fixed-size blocks | 
 |   StorageIndex* m_indices;      // Inner block indices, size m_nonzerosblocks ... OK | 
 |   StorageIndex* m_outerIndex;   // Starting pointer of each block column in m_indices (size m_outerBSize)... OK | 
 |   Index m_blockSize;            // Size of a block for fixed-size blocks, otherwise -1 | 
 | }; | 
 |  | 
 | template <typename Scalar_, int _BlockAtCompileTime, int Options_, typename StorageIndex_> | 
 | class BlockSparseMatrix<Scalar_, _BlockAtCompileTime, Options_, StorageIndex_>::BlockInnerIterator { | 
 |  public: | 
 |   enum { Flags = Options_ }; | 
 |  | 
 |   BlockInnerIterator(const BlockSparseMatrix& mat, const Index outer) | 
 |       : m_mat(mat), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_end(mat.m_outerIndex[outer + 1]) {} | 
 |  | 
 |   inline BlockInnerIterator& operator++() { | 
 |     m_id++; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   inline const Map<const BlockScalar> value() const { | 
 |     return Map<const BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]), rows(), cols()); | 
 |   } | 
 |   inline Map<BlockScalar> valueRef() { | 
 |     return Map<BlockScalar>(&(m_mat.m_values[m_mat.blockPtr(m_id)]), rows(), cols()); | 
 |   } | 
 |   // Block inner index | 
 |   inline Index index() const { return m_mat.m_indices[m_id]; } | 
 |   inline Index outer() const { return m_outer; } | 
 |   // block row index | 
 |   inline Index row() const { return index(); } | 
 |   // block column index | 
 |   inline Index col() const { return outer(); } | 
 |   // FIXME Number of rows in the current block | 
 |   inline Index rows() const { | 
 |     return (m_mat.m_blockSize == Dynamic) ? (m_mat.m_innerOffset[index() + 1] - m_mat.m_innerOffset[index()]) | 
 |                                           : m_mat.m_blockSize; | 
 |   } | 
 |   // Number of columns in the current block ... | 
 |   inline Index cols() const { | 
 |     return (m_mat.m_blockSize == Dynamic) ? (m_mat.m_outerOffset[m_outer + 1] - m_mat.m_outerOffset[m_outer]) | 
 |                                           : m_mat.m_blockSize; | 
 |   } | 
 |   inline operator bool() const { return (m_id < m_end); } | 
 |  | 
 |  protected: | 
 |   const BlockSparseMatrix<Scalar_, _BlockAtCompileTime, Options_, StorageIndex>& m_mat; | 
 |   const Index m_outer; | 
 |   Index m_id; | 
 |   Index m_end; | 
 | }; | 
 |  | 
 | template <typename Scalar_, int _BlockAtCompileTime, int Options_, typename StorageIndex_> | 
 | class BlockSparseMatrix<Scalar_, _BlockAtCompileTime, Options_, StorageIndex_>::InnerIterator { | 
 |  public: | 
 |   InnerIterator(const BlockSparseMatrix& mat, Index outer) | 
 |       : m_mat(mat), | 
 |         m_outerB(mat.outerToBlock(outer)), | 
 |         m_outer(outer), | 
 |         itb(mat, mat.outerToBlock(outer)), | 
 |         m_offset(outer - mat.blockOuterIndex(m_outerB)) { | 
 |     if (itb) { | 
 |       m_id = m_mat.blockInnerIndex(itb.index()); | 
 |       m_start = m_id; | 
 |       m_end = m_mat.blockInnerIndex(itb.index() + 1); | 
 |     } | 
 |   } | 
 |   inline InnerIterator& operator++() { | 
 |     m_id++; | 
 |     if (m_id >= m_end) { | 
 |       ++itb; | 
 |       if (itb) { | 
 |         m_id = m_mat.blockInnerIndex(itb.index()); | 
 |         m_start = m_id; | 
 |         m_end = m_mat.blockInnerIndex(itb.index() + 1); | 
 |       } | 
 |     } | 
 |     return *this; | 
 |   } | 
 |   inline const Scalar& value() const { return itb.value().coeff(m_id - m_start, m_offset); } | 
 |   inline Scalar& valueRef() { return itb.valueRef().coeff(m_id - m_start, m_offset); } | 
 |   inline Index index() const { return m_id; } | 
 |   inline Index outer() const { return m_outer; } | 
 |   inline Index col() const { return outer(); } | 
 |   inline Index row() const { return index(); } | 
 |   inline operator bool() const { return itb; } | 
 |  | 
 |  protected: | 
 |   const BlockSparseMatrix& m_mat; | 
 |   const Index m_outer; | 
 |   const Index m_outerB; | 
 |   BlockInnerIterator itb;  // Iterator through the blocks | 
 |   const Index m_offset;    // Position of this column in the block | 
 |   Index m_start;           // starting inner index of this block | 
 |   Index m_id;              // current inner index in the block | 
 |   Index m_end;             // starting inner index of the next block | 
 | }; | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_SPARSEBLOCKMATRIX_H |