| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H |
| #define EIGEN_SELFADJOINTEIGENSOLVER_H |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * \nonstableyet |
| * |
| * \class SelfAdjointEigenSolver |
| * |
| * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices |
| * |
| * \tparam _MatrixType the type of the matrix of which we are computing the |
| * eigendecomposition; this is expected to be an instantiation of the Matrix |
| * class template. Currently, only real matrices are supported. |
| * |
| * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real |
| * matrices, this means that the matrix is symmetric: it equals its |
| * transpose. This class computes the eigenvalues and eigenvectors of a |
| * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors |
| * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a |
| * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with |
| * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the |
| * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint |
| * matrices, the matrix \f$ V \f$ is always invertible). This is called the |
| * eigendecomposition. |
| * |
| * The algorithm exploits the fact that the matrix is selfadjoint, making it |
| * faster and more accurate than the general purpose eigenvalue algorithms |
| * implemented in EigenSolver and ComplexEigenSolver. |
| * |
| * This class can also be used to solve the generalized eigenvalue problem |
| * \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be |
| * selfadjoint and the matrix \f$ B \f$ should be positive definite. |
| * |
| * Call the function compute() to compute the eigenvalues and eigenvectors of |
| * a given matrix. Alternatively, you can use the |
| * SelfAdjointEigenSolver(const MatrixType&, bool) constructor which computes |
| * the eigenvalues and eigenvectors at construction time. Once the eigenvalue |
| * and eigenvectors are computed, they can be retrieved with the eigenvalues() |
| * and eigenvectors() functions. |
| * |
| * The documentation for SelfAdjointEigenSolver(const MatrixType&, bool) |
| * contains an example of the typical use of this class. |
| * |
| * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver |
| */ |
| template<typename _MatrixType> class SelfAdjointEigenSolver |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| enum { |
| Size = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| /** \brief Scalar type for matrices of type \p _MatrixType. */ |
| typedef typename MatrixType::Scalar Scalar; |
| |
| /** \brief Real scalar type for \p _MatrixType. |
| * |
| * This is just \c Scalar if #Scalar is real (e.g., \c float or |
| * \c double), and the type of the real part of \c Scalar if #Scalar is |
| * complex. |
| */ |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| /** \brief Type for vector of eigenvalues as returned by eigenvalues(). |
| * |
| * This is a column vector with entries of type #RealScalar. |
| * The length of the vector is the size of \p _MatrixType. |
| */ |
| typedef typename ei_plain_col_type<MatrixType, RealScalar>::type RealVectorType; |
| typedef Tridiagonalization<MatrixType> TridiagonalizationType; |
| |
| /** \brief Default constructor for fixed-size matrices. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via compute(const MatrixType&, bool) or |
| * compute(const MatrixType&, const MatrixType&, bool). This constructor |
| * can only be used if \p _MatrixType is a fixed-size matrix; use |
| * SelfAdjointEigenSolver(int) for dynamic-size matrices. |
| * |
| * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out |
| */ |
| SelfAdjointEigenSolver() |
| : m_eivec(), |
| m_eivalues(), |
| m_tridiag(), |
| m_subdiag() |
| { |
| ei_assert(Size!=Dynamic); |
| } |
| |
| /** \brief Constructor, pre-allocates memory for dynamic-size matrices. |
| * |
| * \param [in] size Positive integer, size of the matrix whose |
| * eigenvalues and eigenvectors will be computed. |
| * |
| * This constructor is useful for dynamic-size matrices, when the user |
| * intends to perform decompositions via compute(const MatrixType&, bool) |
| * or compute(const MatrixType&, const MatrixType&, bool). The \p size |
| * parameter is only used as a hint. It is not an error to give a wrong |
| * \p size, but it may impair performance. |
| * |
| * \sa compute(const MatrixType&, bool) for an example |
| */ |
| SelfAdjointEigenSolver(int size) |
| : m_eivec(size, size), |
| m_eivalues(size), |
| m_tridiag(size), |
| m_subdiag(size > 1 ? size - 1 : 1) |
| {} |
| |
| /** \brief Constructor; computes eigendecomposition of given matrix. |
| * |
| * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to |
| * be computed. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * |
| * This constructor calls compute(const MatrixType&, bool) to compute the |
| * eigenvalues of the matrix \p matrix. The eigenvectors are computed if |
| * \p computeEigenvectors is true. |
| * |
| * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out |
| * |
| * \sa compute(const MatrixType&, bool), |
| * SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool) |
| */ |
| SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true) |
| : m_eivec(matrix.rows(), matrix.cols()), |
| m_eivalues(matrix.cols()), |
| m_tridiag(matrix.rows()), |
| m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1) |
| { |
| compute(matrix, computeEigenvectors); |
| } |
| |
| /** \brief Constructor; computes eigendecomposition of given matrix pencil. |
| * |
| * \param[in] matA Selfadjoint matrix in matrix pencil. |
| * \param[in] matB Positive-definite matrix in matrix pencil. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * |
| * This constructor calls compute(const MatrixType&, const MatrixType&, bool) |
| * to compute the eigenvalues and (if requested) the eigenvectors of the |
| * generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the |
| * selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix |
| * \f$ B \f$ . The eigenvectors are computed if \a computeEigenvectors is |
| * true. |
| * |
| * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out |
| * |
| * \sa compute(const MatrixType&, const MatrixType&, bool), |
| * SelfAdjointEigenSolver(const MatrixType&, bool) |
| */ |
| SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true) |
| : m_eivec(matA.rows(), matA.cols()), |
| m_eivalues(matA.cols()), |
| m_tridiag(matA.rows()), |
| m_subdiag(matA.rows() > 1 ? matA.rows() - 1 : 1) |
| { |
| compute(matA, matB, computeEigenvectors); |
| } |
| |
| /** \brief Computes eigendecomposition of given matrix. |
| * |
| * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to |
| * be computed. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * \returns Reference to \c *this |
| * |
| * This function computes the eigenvalues of \p matrix. The eigenvalues() |
| * function can be used to retrieve them. If \p computeEigenvectors is |
| * true, then the eigenvectors are also computed and can be retrieved by |
| * calling eigenvectors(). |
| * |
| * This implementation uses a symmetric QR algorithm. The matrix is first |
| * reduced to tridiagonal form using the Tridiagonalization class. The |
| * tridiagonal matrix is then brought to diagonal form with implicit |
| * symmetric QR steps with Wilkinson shift. Details can be found in |
| * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>. |
| * |
| * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors |
| * are required and \f$ 4n^3/3 \f$ if they are not required. |
| * |
| * This method reuses the memory in the SelfAdjointEigenSolver object that |
| * was allocated when the object was constructed, if the size of the |
| * matrix does not change. |
| * |
| * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out |
| * |
| * \sa SelfAdjointEigenSolver(const MatrixType&, bool) |
| */ |
| SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true); |
| |
| /** \brief Computes eigendecomposition of given matrix pencil. |
| * |
| * \param[in] matA Selfadjoint matrix in matrix pencil. |
| * \param[in] matB Positive-definite matrix in matrix pencil. |
| * \param[in] computeEigenvectors If true, both the eigenvectors and the |
| * eigenvalues are computed; if false, only the eigenvalues are |
| * computed. |
| * \returns Reference to \c *this |
| * |
| * This function computes eigenvalues and (if requested) the eigenvectors |
| * of the generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA |
| * the selfadjoint matrix \f$ A \f$ and \a matB the positive definite |
| * matrix \f$ B \f$. The eigenvalues() function can be used to retrieve |
| * the eigenvalues. If \p computeEigenvectors is true, then the |
| * eigenvectors are also computed and can be retrieved by calling |
| * eigenvectors(). |
| * |
| * The implementation uses LLT to compute the Cholesky decomposition |
| * \f$ B = LL^* \f$ and calls compute(const MatrixType&, bool) to compute |
| * the eigendecomposition \f$ L^{-1} A (L^*)^{-1} \f$. This solves the |
| * generalized eigenproblem, because any solution of the generalized |
| * eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution |
| * \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the |
| * eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$. |
| * |
| * Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out |
| * |
| * \sa SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool) |
| */ |
| SelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true); |
| |
| /** \brief Returns the eigenvectors of given matrix (pencil). |
| * |
| * \returns A const reference to the matrix whose columns are the eigenvectors. |
| * |
| * \pre The eigenvectors have been computed before. |
| * |
| * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding |
| * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The |
| * eigenvectors are normalized to have (Euclidean) norm equal to one. If |
| * this object was used to solve the eigenproblem for the selfadjoint |
| * matrix \f$ A \f$, then the matrix returned by this function is the |
| * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. |
| * |
| * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out |
| * |
| * \sa eigenvalues() |
| */ |
| const MatrixType& eigenvectors() const |
| { |
| #ifndef NDEBUG |
| ei_assert(m_eigenvectorsOk); |
| #endif |
| return m_eivec; |
| } |
| |
| /** \brief Returns the eigenvalues of given matrix (pencil). |
| * |
| * \returns A const reference to the column vector containing the eigenvalues. |
| * |
| * \pre The eigenvalues have been computed before. |
| * |
| * The eigenvalues are repeated according to their algebraic multiplicity, |
| * so there are as many eigenvalues as rows in the matrix. |
| * |
| * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out |
| * |
| * \sa eigenvectors(), MatrixBase::eigenvalues() |
| */ |
| const RealVectorType& eigenvalues() const { return m_eivalues; } |
| |
| /** \brief Computes the positive-definite square root of the matrix. |
| * |
| * \returns the positive-definite square root of the matrix |
| * |
| * \pre The eigenvalues and eigenvectors of a positive-definite matrix |
| * have been computed before. |
| * |
| * The square root of a positive-definite matrix \f$ A \f$ is the |
| * positive-definite matrix whose square equals \f$ A \f$. This function |
| * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the |
| * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. |
| * |
| * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out |
| * |
| * \sa operatorInverseSqrt(), |
| * \ref MatrixFunctions_Module "MatrixFunctions Module" |
| */ |
| MatrixType operatorSqrt() const |
| { |
| return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); |
| } |
| |
| /** \brief Computes the inverse square root of the matrix. |
| * |
| * \returns the inverse positive-definite square root of the matrix |
| * |
| * \pre The eigenvalues and eigenvectors of a positive-definite matrix |
| * have been computed before. |
| * |
| * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to |
| * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is |
| * cheaper than first computing the square root with operatorSqrt() and |
| * then its inverse with MatrixBase::inverse(). |
| * |
| * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp |
| * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out |
| * |
| * \sa operatorSqrt(), MatrixBase::inverse(), |
| * \ref MatrixFunctions_Module "MatrixFunctions Module" |
| */ |
| MatrixType operatorInverseSqrt() const |
| { |
| return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); |
| } |
| |
| |
| protected: |
| MatrixType m_eivec; |
| RealVectorType m_eivalues; |
| TridiagonalizationType m_tridiag; |
| typename TridiagonalizationType::SubDiagonalType m_subdiag; |
| #ifndef NDEBUG |
| bool m_eigenvectorsOk; |
| #endif |
| }; |
| |
| #ifndef EIGEN_HIDE_HEAVY_CODE |
| |
| /** \internal |
| * |
| * \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * Performs a QR step on a tridiagonal symmetric matrix represented as a |
| * pair of two vectors \a diag and \a subdiag. |
| * |
| * \param matA the input selfadjoint matrix |
| * \param hCoeffs returned Householder coefficients |
| * |
| * For compilation efficiency reasons, this procedure does not use eigen expression |
| * for its arguments. |
| * |
| * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: |
| * "implicit symmetric QR step with Wilkinson shift" |
| */ |
| template<typename RealScalar, typename Scalar> |
| static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n); |
| |
| template<typename MatrixType> |
| SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors) |
| { |
| #ifndef NDEBUG |
| m_eigenvectorsOk = computeEigenvectors; |
| #endif |
| assert(matrix.cols() == matrix.rows()); |
| int n = matrix.cols(); |
| m_eivalues.resize(n,1); |
| m_eivec.resize(n,n); |
| |
| if(n==1) |
| { |
| m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0)); |
| m_eivec.setOnes(); |
| return *this; |
| } |
| |
| m_tridiag.compute(matrix); |
| RealVectorType& diag = m_eivalues; |
| diag = m_tridiag.diagonal(); |
| m_subdiag = m_tridiag.subDiagonal(); |
| if (computeEigenvectors) |
| m_eivec = m_tridiag.matrixQ(); |
| |
| int end = n-1; |
| int start = 0; |
| while (end>0) |
| { |
| for (int i = start; i<end; ++i) |
| if (ei_isMuchSmallerThan(ei_abs(m_subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1])))) |
| m_subdiag[i] = 0; |
| |
| // find the largest unreduced block |
| while (end>0 && m_subdiag[end-1]==0) |
| end--; |
| if (end<=0) |
| break; |
| start = end - 1; |
| while (start>0 && m_subdiag[start-1]!=0) |
| start--; |
| |
| ei_tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n); |
| } |
| |
| // Sort eigenvalues and corresponding vectors. |
| // TODO make the sort optional ? |
| // TODO use a better sort algorithm !! |
| for (int i = 0; i < n-1; ++i) |
| { |
| int k; |
| m_eivalues.segment(i,n-i).minCoeff(&k); |
| if (k > 0) |
| { |
| std::swap(m_eivalues[i], m_eivalues[k+i]); |
| m_eivec.col(i).swap(m_eivec.col(k+i)); |
| } |
| } |
| return *this; |
| } |
| |
| template<typename MatrixType> |
| SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>:: |
| compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors) |
| { |
| ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows()); |
| |
| // Compute the cholesky decomposition of matB = L L' |
| LLT<MatrixType> cholB(matB); |
| |
| // compute C = inv(L) A inv(L') |
| MatrixType matC = matA; |
| cholB.matrixL().solveInPlace(matC); |
| // FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' : |
| matC.adjointInPlace(); |
| cholB.matrixL().solveInPlace(matC); |
| matC.adjointInPlace(); |
| // this version works too: |
| // matC = matC.transpose(); |
| // cholB.matrixL().conjugate().template marked<Lower>().solveTriangularInPlace(matC); |
| // matC = matC.transpose(); |
| // FIXME: this should work: (currently it only does for small matrices) |
| // Transpose<MatrixType> trMatC(matC); |
| // cholB.matrixL().conjugate().eval().template marked<Lower>().solveTriangularInPlace(trMatC); |
| |
| compute(matC, computeEigenvectors); |
| |
| if (computeEigenvectors) |
| { |
| // transform back the eigen vectors: evecs = inv(U) * evecs |
| cholB.matrixU().solveInPlace(m_eivec); |
| for (int i=0; i<m_eivec.cols(); ++i) |
| m_eivec.col(i) = m_eivec.col(i).normalized(); |
| } |
| return *this; |
| } |
| |
| #endif // EIGEN_HIDE_HEAVY_CODE |
| |
| #ifndef EIGEN_EXTERN_INSTANTIATIONS |
| template<typename RealScalar, typename Scalar> |
| static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n) |
| { |
| RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5); |
| RealScalar e2 = ei_abs2(subdiag[end-1]); |
| RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2)); |
| RealScalar x = diag[start] - mu; |
| RealScalar z = subdiag[start]; |
| |
| for (int k = start; k < end; ++k) |
| { |
| PlanarRotation<RealScalar> rot; |
| rot.makeGivens(x, z); |
| |
| // do T = G' T G |
| RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; |
| RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1]; |
| |
| diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]); |
| diag[k+1] = rot.s() * sdk + rot.c() * dkp1; |
| subdiag[k] = rot.c() * sdk - rot.s() * dkp1; |
| |
| if (k > start) |
| subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z; |
| |
| x = subdiag[k]; |
| |
| if (k < end - 1) |
| { |
| z = -rot.s() * subdiag[k+1]; |
| subdiag[k + 1] = rot.c() * subdiag[k+1]; |
| } |
| |
| // apply the givens rotation to the unit matrix Q = Q * G |
| if (matrixQ) |
| { |
| Map<Matrix<Scalar,Dynamic,Dynamic> > q(matrixQ,n,n); |
| q.applyOnTheRight(k,k+1,rot); |
| } |
| } |
| } |
| #endif |
| |
| #endif // EIGEN_SELFADJOINTEIGENSOLVER_H |