blob: 76343640d3c5e16b98ff3eff259d0443ceca4ca7 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
#define EIGEN_SELFADJOINTEIGENSOLVER_H
/** \eigenvalues_module \ingroup Eigenvalues_Module
* \nonstableyet
*
* \class SelfAdjointEigenSolver
*
* \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* eigendecomposition; this is expected to be an instantiation of the Matrix
* class template. Currently, only real matrices are supported.
*
* A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
* matrices, this means that the matrix is symmetric: it equals its
* transpose. This class computes the eigenvalues and eigenvectors of a
* selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
* \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
* selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
* the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
* eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint
* matrices, the matrix \f$ V \f$ is always invertible). This is called the
* eigendecomposition.
*
* The algorithm exploits the fact that the matrix is selfadjoint, making it
* faster and more accurate than the general purpose eigenvalue algorithms
* implemented in EigenSolver and ComplexEigenSolver.
*
* This class can also be used to solve the generalized eigenvalue problem
* \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
* selfadjoint and the matrix \f$ B \f$ should be positive definite.
*
* Call the function compute() to compute the eigenvalues and eigenvectors of
* a given matrix. Alternatively, you can use the
* SelfAdjointEigenSolver(const MatrixType&, bool) constructor which computes
* the eigenvalues and eigenvectors at construction time. Once the eigenvalue
* and eigenvectors are computed, they can be retrieved with the eigenvalues()
* and eigenvectors() functions.
*
* The documentation for SelfAdjointEigenSolver(const MatrixType&, bool)
* contains an example of the typical use of this class.
*
* \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
*/
template<typename _MatrixType> class SelfAdjointEigenSolver
{
public:
typedef _MatrixType MatrixType;
enum {
Size = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
/** \brief Scalar type for matrices of type \p _MatrixType. */
typedef typename MatrixType::Scalar Scalar;
/** \brief Real scalar type for \p _MatrixType.
*
* This is just \c Scalar if #Scalar is real (e.g., \c float or
* \c double), and the type of the real part of \c Scalar if #Scalar is
* complex.
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \brief Type for vector of eigenvalues as returned by eigenvalues().
*
* This is a column vector with entries of type #RealScalar.
* The length of the vector is the size of \p _MatrixType.
*/
typedef typename ei_plain_col_type<MatrixType, RealScalar>::type RealVectorType;
typedef Tridiagonalization<MatrixType> TridiagonalizationType;
/** \brief Default constructor for fixed-size matrices.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via compute(const MatrixType&, bool) or
* compute(const MatrixType&, const MatrixType&, bool). This constructor
* can only be used if \p _MatrixType is a fixed-size matrix; use
* SelfAdjointEigenSolver(int) for dynamic-size matrices.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
*/
SelfAdjointEigenSolver()
: m_eivec(),
m_eivalues(),
m_tridiag(),
m_subdiag()
{
ei_assert(Size!=Dynamic);
}
/** \brief Constructor, pre-allocates memory for dynamic-size matrices.
*
* \param [in] size Positive integer, size of the matrix whose
* eigenvalues and eigenvectors will be computed.
*
* This constructor is useful for dynamic-size matrices, when the user
* intends to perform decompositions via compute(const MatrixType&, bool)
* or compute(const MatrixType&, const MatrixType&, bool). The \p size
* parameter is only used as a hint. It is not an error to give a wrong
* \p size, but it may impair performance.
*
* \sa compute(const MatrixType&, bool) for an example
*/
SelfAdjointEigenSolver(int size)
: m_eivec(size, size),
m_eivalues(size),
m_tridiag(size),
m_subdiag(size > 1 ? size - 1 : 1)
{}
/** \brief Constructor; computes eigendecomposition of given matrix.
*
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
* be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
*
* This constructor calls compute(const MatrixType&, bool) to compute the
* eigenvalues of the matrix \p matrix. The eigenvectors are computed if
* \p computeEigenvectors is true.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
*
* \sa compute(const MatrixType&, bool),
* SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool)
*/
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols()),
m_tridiag(matrix.rows()),
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1)
{
compute(matrix, computeEigenvectors);
}
/** \brief Constructor; computes eigendecomposition of given matrix pencil.
*
* \param[in] matA Selfadjoint matrix in matrix pencil.
* \param[in] matB Positive-definite matrix in matrix pencil.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
*
* This constructor calls compute(const MatrixType&, const MatrixType&, bool)
* to compute the eigenvalues and (if requested) the eigenvectors of the
* generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA the
* selfadjoint matrix \f$ A \f$ and \a matB the positive definite matrix
* \f$ B \f$ . The eigenvectors are computed if \a computeEigenvectors is
* true.
*
* Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp
* Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.out
*
* \sa compute(const MatrixType&, const MatrixType&, bool),
* SelfAdjointEigenSolver(const MatrixType&, bool)
*/
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
: m_eivec(matA.rows(), matA.cols()),
m_eivalues(matA.cols()),
m_tridiag(matA.rows()),
m_subdiag(matA.rows() > 1 ? matA.rows() - 1 : 1)
{
compute(matA, matB, computeEigenvectors);
}
/** \brief Computes eigendecomposition of given matrix.
*
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
* be computed.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \returns Reference to \c *this
*
* This function computes the eigenvalues of \p matrix. The eigenvalues()
* function can be used to retrieve them. If \p computeEigenvectors is
* true, then the eigenvectors are also computed and can be retrieved by
* calling eigenvectors().
*
* This implementation uses a symmetric QR algorithm. The matrix is first
* reduced to tridiagonal form using the Tridiagonalization class. The
* tridiagonal matrix is then brought to diagonal form with implicit
* symmetric QR steps with Wilkinson shift. Details can be found in
* Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
*
* The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
* are required and \f$ 4n^3/3 \f$ if they are not required.
*
* This method reuses the memory in the SelfAdjointEigenSolver object that
* was allocated when the object was constructed, if the size of the
* matrix does not change.
*
* Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
* Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
*
* \sa SelfAdjointEigenSolver(const MatrixType&, bool)
*/
SelfAdjointEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
/** \brief Computes eigendecomposition of given matrix pencil.
*
* \param[in] matA Selfadjoint matrix in matrix pencil.
* \param[in] matB Positive-definite matrix in matrix pencil.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
* \returns Reference to \c *this
*
* This function computes eigenvalues and (if requested) the eigenvectors
* of the generalized eigenproblem \f$ Ax = \lambda B x \f$ with \a matA
* the selfadjoint matrix \f$ A \f$ and \a matB the positive definite
* matrix \f$ B \f$. The eigenvalues() function can be used to retrieve
* the eigenvalues. If \p computeEigenvectors is true, then the
* eigenvectors are also computed and can be retrieved by calling
* eigenvectors().
*
* The implementation uses LLT to compute the Cholesky decomposition
* \f$ B = LL^* \f$ and calls compute(const MatrixType&, bool) to compute
* the eigendecomposition \f$ L^{-1} A (L^*)^{-1} \f$. This solves the
* generalized eigenproblem, because any solution of the generalized
* eigenproblem \f$ Ax = \lambda B x \f$ corresponds to a solution
* \f$ L^{-1} A (L^*)^{-1} (L^* x) = \lambda (L^* x) \f$ of the
* eigenproblem for \f$ L^{-1} A (L^*)^{-1} \f$.
*
* Example: \include SelfAdjointEigenSolver_compute_MatrixType2.cpp
* Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType2.out
*
* \sa SelfAdjointEigenSolver(const MatrixType&, const MatrixType&, bool)
*/
SelfAdjointEigenSolver& compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true);
/** \brief Returns the eigenvectors of given matrix (pencil).
*
* \returns A const reference to the matrix whose columns are the eigenvectors.
*
* \pre The eigenvectors have been computed before.
*
* Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
* to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
* eigenvectors are normalized to have (Euclidean) norm equal to one. If
* this object was used to solve the eigenproblem for the selfadjoint
* matrix \f$ A \f$, then the matrix returned by this function is the
* matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
*
* Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
* Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
*
* \sa eigenvalues()
*/
const MatrixType& eigenvectors() const
{
#ifndef NDEBUG
ei_assert(m_eigenvectorsOk);
#endif
return m_eivec;
}
/** \brief Returns the eigenvalues of given matrix (pencil).
*
* \returns A const reference to the column vector containing the eigenvalues.
*
* \pre The eigenvalues have been computed before.
*
* The eigenvalues are repeated according to their algebraic multiplicity,
* so there are as many eigenvalues as rows in the matrix.
*
* Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
* Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
*
* \sa eigenvectors(), MatrixBase::eigenvalues()
*/
const RealVectorType& eigenvalues() const { return m_eivalues; }
/** \brief Computes the positive-definite square root of the matrix.
*
* \returns the positive-definite square root of the matrix
*
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
* have been computed before.
*
* The square root of a positive-definite matrix \f$ A \f$ is the
* positive-definite matrix whose square equals \f$ A \f$. This function
* uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
* square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
*
* Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
* Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
*
* \sa operatorInverseSqrt(),
* \ref MatrixFunctions_Module "MatrixFunctions Module"
*/
MatrixType operatorSqrt() const
{
return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
/** \brief Computes the inverse square root of the matrix.
*
* \returns the inverse positive-definite square root of the matrix
*
* \pre The eigenvalues and eigenvectors of a positive-definite matrix
* have been computed before.
*
* This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
* compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
* cheaper than first computing the square root with operatorSqrt() and
* then its inverse with MatrixBase::inverse().
*
* Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
* Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
*
* \sa operatorSqrt(), MatrixBase::inverse(),
* \ref MatrixFunctions_Module "MatrixFunctions Module"
*/
MatrixType operatorInverseSqrt() const
{
return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
}
protected:
MatrixType m_eivec;
RealVectorType m_eivalues;
TridiagonalizationType m_tridiag;
typename TridiagonalizationType::SubDiagonalType m_subdiag;
#ifndef NDEBUG
bool m_eigenvectorsOk;
#endif
};
#ifndef EIGEN_HIDE_HEAVY_CODE
/** \internal
*
* \eigenvalues_module \ingroup Eigenvalues_Module
*
* Performs a QR step on a tridiagonal symmetric matrix represented as a
* pair of two vectors \a diag and \a subdiag.
*
* \param matA the input selfadjoint matrix
* \param hCoeffs returned Householder coefficients
*
* For compilation efficiency reasons, this procedure does not use eigen expression
* for its arguments.
*
* Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
* "implicit symmetric QR step with Wilkinson shift"
*/
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n);
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
{
#ifndef NDEBUG
m_eigenvectorsOk = computeEigenvectors;
#endif
assert(matrix.cols() == matrix.rows());
int n = matrix.cols();
m_eivalues.resize(n,1);
m_eivec.resize(n,n);
if(n==1)
{
m_eivalues.coeffRef(0,0) = ei_real(matrix.coeff(0,0));
m_eivec.setOnes();
return *this;
}
m_tridiag.compute(matrix);
RealVectorType& diag = m_eivalues;
diag = m_tridiag.diagonal();
m_subdiag = m_tridiag.subDiagonal();
if (computeEigenvectors)
m_eivec = m_tridiag.matrixQ();
int end = n-1;
int start = 0;
while (end>0)
{
for (int i = start; i<end; ++i)
if (ei_isMuchSmallerThan(ei_abs(m_subdiag[i]),(ei_abs(diag[i])+ei_abs(diag[i+1]))))
m_subdiag[i] = 0;
// find the largest unreduced block
while (end>0 && m_subdiag[end-1]==0)
end--;
if (end<=0)
break;
start = end - 1;
while (start>0 && m_subdiag[start-1]!=0)
start--;
ei_tridiagonal_qr_step(diag.data(), m_subdiag.data(), start, end, computeEigenvectors ? m_eivec.data() : (Scalar*)0, n);
}
// Sort eigenvalues and corresponding vectors.
// TODO make the sort optional ?
// TODO use a better sort algorithm !!
for (int i = 0; i < n-1; ++i)
{
int k;
m_eivalues.segment(i,n-i).minCoeff(&k);
if (k > 0)
{
std::swap(m_eivalues[i], m_eivalues[k+i]);
m_eivec.col(i).swap(m_eivec.col(k+i));
}
}
return *this;
}
template<typename MatrixType>
SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::
compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors)
{
ei_assert(matA.cols()==matA.rows() && matB.rows()==matA.rows() && matB.cols()==matB.rows());
// Compute the cholesky decomposition of matB = L L'
LLT<MatrixType> cholB(matB);
// compute C = inv(L) A inv(L')
MatrixType matC = matA;
cholB.matrixL().solveInPlace(matC);
// FIXME since we currently do not support A * inv(L'), let's do (inv(L) A')' :
matC.adjointInPlace();
cholB.matrixL().solveInPlace(matC);
matC.adjointInPlace();
// this version works too:
// matC = matC.transpose();
// cholB.matrixL().conjugate().template marked<Lower>().solveTriangularInPlace(matC);
// matC = matC.transpose();
// FIXME: this should work: (currently it only does for small matrices)
// Transpose<MatrixType> trMatC(matC);
// cholB.matrixL().conjugate().eval().template marked<Lower>().solveTriangularInPlace(trMatC);
compute(matC, computeEigenvectors);
if (computeEigenvectors)
{
// transform back the eigen vectors: evecs = inv(U) * evecs
cholB.matrixU().solveInPlace(m_eivec);
for (int i=0; i<m_eivec.cols(); ++i)
m_eivec.col(i) = m_eivec.col(i).normalized();
}
return *this;
}
#endif // EIGEN_HIDE_HEAVY_CODE
#ifndef EIGEN_EXTERN_INSTANTIATIONS
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)
{
RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
RealScalar e2 = ei_abs2(subdiag[end-1]);
RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * ei_sqrt(td*td + e2));
RealScalar x = diag[start] - mu;
RealScalar z = subdiag[start];
for (int k = start; k < end; ++k)
{
PlanarRotation<RealScalar> rot;
rot.makeGivens(x, z);
// do T = G' T G
RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
if (k > start)
subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
x = subdiag[k];
if (k < end - 1)
{
z = -rot.s() * subdiag[k+1];
subdiag[k + 1] = rot.c() * subdiag[k+1];
}
// apply the givens rotation to the unit matrix Q = Q * G
if (matrixQ)
{
Map<Matrix<Scalar,Dynamic,Dynamic> > q(matrixQ,n,n);
q.applyOnTheRight(k,k+1,rot);
}
}
}
#endif
#endif // EIGEN_SELFADJOINTEIGENSOLVER_H