| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_ANGLEAXIS_H |
| #define EIGEN_ANGLEAXIS_H |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class AngleAxis |
| * |
| * \brief Represents a 3D rotation as a rotation angle around an arbitrary 3D axis |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients. |
| * |
| * \warning When setting up an AngleAxis object, the axis vector \b must \b be \b normalized. |
| * |
| * The following two typedefs are provided for convenience: |
| * \li \c AngleAxisf for \c float |
| * \li \c AngleAxisd for \c double |
| * |
| * Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily |
| * mimic Euler-angles. Here is an example: |
| * \include AngleAxis_mimic_euler.cpp |
| * Output: \verbinclude AngleAxis_mimic_euler.out |
| * |
| * \note This class is not aimed to be used to store a rotation transformation, |
| * but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) |
| * and transformation objects. |
| * |
| * \sa class Quaternion, class Transform, MatrixBase::UnitX() |
| */ |
| |
| template<typename _Scalar> struct ei_traits<AngleAxis<_Scalar> > |
| { |
| typedef _Scalar Scalar; |
| }; |
| |
| template<typename _Scalar> |
| class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3> |
| { |
| typedef RotationBase<AngleAxis<_Scalar>,3> Base; |
| |
| public: |
| |
| using Base::operator*; |
| |
| enum { Dim = 3 }; |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Quaternion<Scalar> QuaternionType; |
| |
| protected: |
| |
| Vector3 m_axis; |
| Scalar m_angle; |
| |
| public: |
| |
| /** Default constructor without initialization. */ |
| AngleAxis() {} |
| /** Constructs and initialize the angle-axis rotation from an \a angle in radian |
| * and an \a axis which \b must \b be \b normalized. |
| * |
| * \warning If the \a axis vector is not normalized, then the angle-axis object |
| * represents an invalid rotation. */ |
| template<typename Derived> |
| inline AngleAxis(Scalar angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} |
| /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ |
| template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } |
| /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ |
| template<typename Derived> |
| inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } |
| |
| Scalar angle() const { return m_angle; } |
| Scalar& angle() { return m_angle; } |
| |
| const Vector3& axis() const { return m_axis; } |
| Vector3& axis() { return m_axis; } |
| |
| /** Concatenates two rotations */ |
| inline QuaternionType operator* (const AngleAxis& other) const |
| { return QuaternionType(*this) * QuaternionType(other); } |
| |
| /** Concatenates two rotations */ |
| inline QuaternionType operator* (const QuaternionType& other) const |
| { return QuaternionType(*this) * other; } |
| |
| /** Concatenates two rotations */ |
| friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) |
| { return a * QuaternionType(b); } |
| |
| /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ |
| AngleAxis inverse() const |
| { return AngleAxis(-m_angle, m_axis); } |
| |
| template<class QuatDerived> |
| AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); |
| template<typename Derived> |
| AngleAxis& operator=(const MatrixBase<Derived>& m); |
| |
| template<typename Derived> |
| AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); |
| Matrix3 toRotationMatrix(void) const; |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const |
| { return typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) |
| { |
| m_axis = other.axis().template cast<Scalar>(); |
| m_angle = Scalar(other.angle()); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
| { return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); } |
| }; |
| |
| /** \ingroup Geometry_Module |
| * single precision angle-axis type */ |
| typedef AngleAxis<float> AngleAxisf; |
| /** \ingroup Geometry_Module |
| * double precision angle-axis type */ |
| typedef AngleAxis<double> AngleAxisd; |
| |
| /** Set \c *this from a quaternion. |
| * The axis is normalized. |
| */ |
| template<typename Scalar> |
| template<typename QuatDerived> |
| AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) |
| { |
| Scalar n2 = q.vec().squaredNorm(); |
| if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision()) |
| { |
| m_angle = 0; |
| m_axis << 1, 0, 0; |
| } |
| else |
| { |
| m_angle = 2*std::acos(q.w()); |
| m_axis = q.vec() / ei_sqrt(n2); |
| } |
| return *this; |
| } |
| |
| /** Set \c *this from a 3x3 rotation matrix \a mat. |
| */ |
| template<typename Scalar> |
| template<typename Derived> |
| AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) |
| { |
| // Since a direct conversion would not be really faster, |
| // let's use the robust Quaternion implementation: |
| return *this = QuaternionType(mat); |
| } |
| |
| /** |
| * \brief Sets \c *this from a 3x3 rotation matrix. |
| **/ |
| template<typename Scalar> |
| template<typename Derived> |
| AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) |
| { |
| return *this = QuaternionType(mat); |
| } |
| |
| /** Constructs and \returns an equivalent 3x3 rotation matrix. |
| */ |
| template<typename Scalar> |
| typename AngleAxis<Scalar>::Matrix3 |
| AngleAxis<Scalar>::toRotationMatrix(void) const |
| { |
| Matrix3 res; |
| Vector3 sin_axis = ei_sin(m_angle) * m_axis; |
| Scalar c = ei_cos(m_angle); |
| Vector3 cos1_axis = (Scalar(1)-c) * m_axis; |
| |
| Scalar tmp; |
| tmp = cos1_axis.x() * m_axis.y(); |
| res.coeffRef(0,1) = tmp - sin_axis.z(); |
| res.coeffRef(1,0) = tmp + sin_axis.z(); |
| |
| tmp = cos1_axis.x() * m_axis.z(); |
| res.coeffRef(0,2) = tmp + sin_axis.y(); |
| res.coeffRef(2,0) = tmp - sin_axis.y(); |
| |
| tmp = cos1_axis.y() * m_axis.z(); |
| res.coeffRef(1,2) = tmp - sin_axis.x(); |
| res.coeffRef(2,1) = tmp + sin_axis.x(); |
| |
| res.diagonal() = (cos1_axis.cwiseProduct(m_axis)).array() + c; |
| |
| return res; |
| } |
| |
| #endif // EIGEN_ANGLEAXIS_H |