| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SCALING_H |
| #define EIGEN_SCALING_H |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Scaling |
| * |
| * \brief Represents a generic uniform scaling transformation |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients. |
| * |
| * This class represent a uniform scaling transformation. It is the return |
| * type of Scaling(Scalar), and most of the time this is the only way it |
| * is used. In particular, this class is not aimed to be used to store a scaling transformation, |
| * but rather to make easier the constructions and updates of Transform objects. |
| * |
| * To represent an axis aligned scaling, use the DiagonalMatrix class. |
| * |
| * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform |
| */ |
| template<typename _Scalar> |
| class UniformScaling |
| { |
| public: |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| |
| protected: |
| |
| Scalar m_factor; |
| |
| public: |
| |
| /** Default constructor without initialization. */ |
| UniformScaling() {} |
| /** Constructs and initialize a uniform scaling transformation */ |
| explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} |
| |
| inline const Scalar& factor() const { return m_factor; } |
| inline Scalar& factor() { return m_factor; } |
| |
| /** Concatenates two uniform scaling */ |
| inline UniformScaling operator* (const UniformScaling& other) const |
| { return UniformScaling(m_factor * other.factor()); } |
| |
| /** Concatenates a uniform scaling and a translation */ |
| template<int Dim> |
| inline Transform<Scalar,Dim> operator* (const Translation<Scalar,Dim>& t) const; |
| |
| /** Concatenates a uniform scaling and an affine transformation */ |
| template<int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim, Mode>& t) const; |
| |
| /** Concatenates a uniform scaling and a linear transformation matrix */ |
| // TODO returns an expression |
| template<typename Derived> |
| inline typename ei_plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const |
| { return other * m_factor; } |
| |
| template<typename Derived,int Dim> |
| inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const |
| { return r.toRotationMatrix() * m_factor; } |
| |
| /** \returns the inverse scaling */ |
| inline UniformScaling inverse() const |
| { return UniformScaling(Scalar(1)/m_factor); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline UniformScaling<NewScalarType> cast() const |
| { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) |
| { m_factor = Scalar(other.factor()); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
| { return ei_isApprox(m_factor, other.factor(), prec); } |
| |
| }; |
| |
| /** Concatenates a linear transformation matrix and a uniform scaling */ |
| // NOTE this operator is defiend in MatrixBase and not as a friend function |
| // of UniformScaling to fix an internal crash of Intel's ICC |
| template<typename Derived> const typename MatrixBase<Derived>::ScalarMultipleReturnType |
| MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const |
| { return derived() * s.factor(); } |
| |
| /** Constructs a uniform scaling from scale factor \a s */ |
| static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } |
| /** Constructs a uniform scaling from scale factor \a s */ |
| static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } |
| /** Constructs a uniform scaling from scale factor \a s */ |
| template<typename RealScalar> |
| static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) |
| { return UniformScaling<std::complex<RealScalar> >(s); } |
| |
| /** Constructs a 2D axis aligned scaling */ |
| template<typename Scalar> |
| static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy) |
| { return DiagonalMatrix<Scalar,2>(sx, sy); } |
| /** Constructs a 3D axis aligned scaling */ |
| template<typename Scalar> |
| static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz) |
| { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } |
| |
| /** Constructs an axis aligned scaling expression from vector expression \a coeffs |
| * This is an alias for coeffs.asDiagonal() |
| */ |
| template<typename Derived> |
| static inline const DiagonalWrapper<Derived> Scaling(const MatrixBase<Derived>& coeffs) |
| { return coeffs.asDiagonal(); } |
| |
| /** \addtogroup Geometry_Module */ |
| //@{ |
| /** \deprecated */ |
| typedef DiagonalMatrix<float, 2> AlignedScaling2f; |
| /** \deprecated */ |
| typedef DiagonalMatrix<double,2> AlignedScaling2d; |
| /** \deprecated */ |
| typedef DiagonalMatrix<float, 3> AlignedScaling3f; |
| /** \deprecated */ |
| typedef DiagonalMatrix<double,3> AlignedScaling3d; |
| //@} |
| |
| template<typename Scalar> |
| template<int Dim> |
| inline Transform<Scalar,Dim> |
| UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const |
| { |
| Transform<Scalar,Dim> res; |
| res.matrix().setZero(); |
| res.linear().diagonal().fill(factor()); |
| res.translation() = factor() * t.vector(); |
| res(Dim,Dim) = Scalar(1); |
| return res; |
| } |
| |
| template<typename Scalar> |
| template<int Dim,int Mode> |
| inline Transform<Scalar,Dim,Mode> |
| UniformScaling<Scalar>::operator* (const Transform<Scalar,Dim, Mode>& t) const |
| { |
| Transform<Scalar,Dim> res = t; |
| res.prescale(factor()); |
| return res; |
| } |
| |
| #endif // EIGEN_SCALING_H |