| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TRANSFORM_H |
| #define EIGEN_TRANSFORM_H |
| |
| // Note that we have to pass Dim and HDim because it is not allowed to use a template |
| // parameter to define a template specialization. To be more precise, in the following |
| // specializations, it is not allowed to use Dim+1 instead of HDim. |
| template< typename Other, |
| int Mode, |
| int Dim, |
| int HDim, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct ei_transform_right_product_impl; |
| |
| template<typename TransformType> struct ei_transform_take_affine_part; |
| |
| template< typename Other, |
| int Mode, |
| int Dim, |
| int HDim, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct ei_transform_left_product_impl; |
| |
| template<typename Lhs,typename Rhs> struct ei_transform_transform_product_impl; |
| |
| template< typename Other, |
| int Mode, |
| int Dim, |
| int HDim, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct ei_transform_construct_from_matrix; |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Transform |
| * |
| * \brief Represents an homogeneous transformation in a N dimensional space |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients |
| * \param _Dim the dimension of the space |
| * \param _Mode the type of the transformation. Can be: |
| * - Affine: the transformation is stored as a (Dim+1)^2 matrix, |
| * where the last row is assumed to be [0 ... 0 1]. |
| * This is the default. |
| * - AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. |
| * - Projective: the transformation is stored as a (Dim+1)^2 matrix |
| * whithout any assumption. |
| * |
| * The homography is internally represented and stored by a matrix which |
| * is available through the matrix() method. To understand the behavior of |
| * this class you have to think a Transform object as its internal |
| * matrix representation. The chosen convention is right multiply: |
| * |
| * \code v' = T * v \endcode |
| * |
| * Thefore, an affine transformation matrix M is shaped like this: |
| * |
| * \f$ \left( \begin{array}{cc} |
| * linear & translation\\ |
| * 0 ... 0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * Note that for a provective transformation the last row can be anything, |
| * and then the interpretation of different parts might be sighlty different. |
| * |
| * However, unlike a plain matrix, the Transform class provides many features |
| * simplifying both its assembly and usage. In particular, it can be composed |
| * with any other transformations (Transform,Trnaslation,RotationBase,Matrix) |
| * and can be directly used to transform implicit homogeneous vectors. All these |
| * operations are handled via the operator*. For the composition of transformations, |
| * its principle consists to first convert the right/left hand sides of the product |
| * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. |
| * Of course, internally, operator* tries to perform the minimal number of operations |
| * according to the nature of each terms. Likewise, when applying the transform |
| * to non homogeneous vectors, the latters are automatically promoted to homogeneous |
| * one before doing the matrix product. The convertions to homogeneous representations |
| * are performed as follow: |
| * |
| * \b Translation t (Dim)x(1): |
| * \f$ \left( \begin{array}{cc} |
| * I & t \\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Rotation R (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * R & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Linear \b Matrix L (Dim)x(Dim): |
| * \f$ \left( \begin{array}{cc} |
| * L & 0\\ |
| * 0\,...\,0 & 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Affine \b Matrix A (Dim)x(Dim+1): |
| * \f$ \left( \begin{array}{c} |
| * A\\ |
| * 0\,...\,0\,1 |
| * \end{array} \right) \f$ |
| * |
| * \b Column \b vector v (Dim)x(1): |
| * \f$ \left( \begin{array}{c} |
| * v\\ |
| * 1 |
| * \end{array} \right) \f$ |
| * |
| * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n): |
| * \f$ \left( \begin{array}{ccc} |
| * v_1 & ... & v_n\\ |
| * 1 & ... & 1 |
| * \end{array} \right) \f$ |
| * |
| * The concatenation of a Tranform object with any kind of other transformation |
| * always returns a Transform object. |
| * |
| * A little execption to the "as pure matrix product" rule is the case of the |
| * transformation of non homogeneous vectors by an affine transformation. In |
| * that case the last matrix row can be ignored, and the product returns non |
| * homogeneous vectors. |
| * |
| * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, |
| * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. |
| * The solution is either to use a Dim x Dynamic matrix or explicitely request a |
| * vector transformation by making the vector homogeneous: |
| * \code |
| * m' = T * m.colwise().homogeneous(); |
| * \endcode |
| * Note that there is zero overhead. |
| * |
| * Conversion methods from/to Qt's QMatrix and QTransform are available if the |
| * preprocessor token EIGEN_QT_SUPPORT is defined. |
| * |
| * \sa class Matrix, class Quaternion |
| */ |
| template<typename _Scalar, int _Dim, int _Mode> |
| class Transform |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) |
| enum { |
| Mode = _Mode, |
| Dim = _Dim, ///< space dimension in which the transformation holds |
| HDim = _Dim+1, ///< size of a respective homogeneous vector |
| Rows = int(Mode)==(AffineCompact) ? Dim : HDim |
| }; |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| /** type of the matrix used to represent the transformation */ |
| typedef Matrix<Scalar,Rows,HDim> MatrixType; |
| /** type of the matrix used to represent the linear part of the transformation */ |
| typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; |
| /** type of read/write reference to the linear part of the transformation */ |
| typedef Block<MatrixType,Dim,Dim> LinearPart; |
| /** type of read/write reference to the affine part of the transformation */ |
| typedef typename ei_meta_if<int(Mode)==int(AffineCompact), |
| MatrixType&, |
| Block<MatrixType,Dim,HDim> >::ret AffinePart; |
| /** type of read/write reference to the affine part of the transformation */ |
| typedef typename ei_meta_if<int(Mode)==int(AffineCompact), |
| MatrixType&, |
| Block<MatrixType,Dim,HDim> >::ret AffinePartNested; |
| /** type of a vector */ |
| typedef Matrix<Scalar,Dim,1> VectorType; |
| /** type of a read/write reference to the translation part of the rotation */ |
| typedef Block<MatrixType,Dim,1> TranslationPart; |
| /** corresponding translation type */ |
| typedef Translation<Scalar,Dim> TranslationType; |
| |
| protected: |
| |
| MatrixType m_matrix; |
| |
| public: |
| |
| /** Default constructor without initialization of the meaningfull coefficients. |
| * If Mode==Affine, then the last row is set to [0 ... 0 1] */ |
| inline Transform() |
| { |
| if (int(Mode)==Affine) |
| makeAffine(); |
| } |
| |
| inline Transform(const Transform& other) |
| { |
| m_matrix = other.m_matrix; |
| } |
| |
| inline explicit Transform(const TranslationType& t) { *this = t; } |
| inline explicit Transform(const UniformScaling<Scalar>& s) { *this = s; } |
| template<typename Derived> |
| inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; } |
| |
| inline Transform& operator=(const Transform& other) |
| { m_matrix = other.m_matrix; return *this; } |
| |
| typedef ei_transform_take_affine_part<Transform> take_affine_part; |
| |
| /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ |
| template<typename OtherDerived> |
| inline explicit Transform(const EigenBase<OtherDerived>& other) |
| { |
| ei_transform_construct_from_matrix<OtherDerived,Mode,Dim,HDim>::run(this, other.derived()); |
| } |
| |
| /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ |
| template<typename OtherDerived> |
| inline Transform& operator=(const EigenBase<OtherDerived>& other) |
| { |
| ei_transform_construct_from_matrix<OtherDerived,Mode,Dim,HDim>::run(this, other.derived()); |
| return *this; |
| } |
| |
| template<int OtherMode> |
| inline Transform(const Transform<Scalar,Dim,OtherMode>& other) |
| { |
| ei_assert(OtherMode!=Projective && "You cannot directly assign a projective transform to an affine one."); |
| typedef typename Transform<Scalar,Dim,OtherMode>::MatrixType OtherMatrixType; |
| ei_transform_construct_from_matrix<OtherMatrixType,Mode,Dim,HDim>::run(this, other.matrix()); |
| } |
| |
| template<typename OtherDerived> |
| Transform(const ReturnByValue<OtherDerived>& other) |
| { |
| other.evalTo(*this); |
| } |
| |
| template<typename OtherDerived> |
| Transform& operator=(const ReturnByValue<OtherDerived>& other) |
| { |
| other.evalTo(*this); |
| return *this; |
| } |
| |
| #ifdef EIGEN_QT_SUPPORT |
| inline Transform(const QMatrix& other); |
| inline Transform& operator=(const QMatrix& other); |
| inline QMatrix toQMatrix(void) const; |
| inline Transform(const QTransform& other); |
| inline Transform& operator=(const QTransform& other); |
| inline QTransform toQTransform(void) const; |
| #endif |
| |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operaror(int,int) const */ |
| inline Scalar operator() (int row, int col) const { return m_matrix(row,col); } |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operaror(int,int) */ |
| inline Scalar& operator() (int row, int col) { return m_matrix(row,col); } |
| |
| /** \returns a read-only expression of the transformation matrix */ |
| inline const MatrixType& matrix() const { return m_matrix; } |
| /** \returns a writable expression of the transformation matrix */ |
| inline MatrixType& matrix() { return m_matrix; } |
| |
| /** \returns a read-only expression of the linear part of the transformation */ |
| inline const LinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); } |
| /** \returns a writable expression of the linear part of the transformation */ |
| inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); } |
| |
| /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ |
| inline const AffinePart affine() const { return take_affine_part::run(m_matrix); } |
| /** \returns a writable expression of the Dim x HDim affine part of the transformation */ |
| inline AffinePart affine() { return take_affine_part::run(m_matrix); } |
| |
| /** \returns a read-only expression of the translation vector of the transformation */ |
| inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); } |
| /** \returns a writable expression of the translation vector of the transformation */ |
| inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); } |
| |
| /** \returns an expression of the product between the transform \c *this and a matrix expression \a other |
| * |
| * The right hand side \a other might be either: |
| * \li a vector of size Dim, |
| * \li an homogeneous vector of size Dim+1, |
| * \li a set of vectors of size Dim x Dynamic, |
| * \li a set of homogeneous vectors of size Dim+1 x Dynamic, |
| * \li a linear transformation matrix of size Dim x Dim, |
| * \li an affine transformation matrix of size Dim x Dim+1, |
| * \li a transformation matrix of size Dim+1 x Dim+1. |
| */ |
| // note: this function is defined here because some compilers cannot find the respective declaration |
| template<typename OtherDerived> |
| inline const typename ei_transform_right_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType |
| operator * (const EigenBase<OtherDerived> &other) const |
| { return ei_transform_right_product_impl<OtherDerived,Mode,Dim,HDim>::run(*this,other.derived()); } |
| |
| /** \returns the product expression of a transformation matrix \a a times a transform \a b |
| * |
| * The left hand side \a other might be either: |
| * \li a linear transformation matrix of size Dim x Dim, |
| * \li an affine transformation matrix of size Dim x Dim+1, |
| * \li a general transformation matrix of size Dim+1 x Dim+1. |
| */ |
| template<typename OtherDerived> friend |
| inline const typename ei_transform_left_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType |
| operator * (const EigenBase<OtherDerived> &a, const Transform &b) |
| { return ei_transform_left_product_impl<OtherDerived,Mode,Dim,HDim>::run(a.derived(),b); } |
| |
| template<typename OtherDerived> |
| inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } |
| |
| /** Contatenates two transformations */ |
| inline const Transform operator * (const Transform& other) const |
| { |
| return ei_transform_transform_product_impl<Transform,Transform>::run(*this,other); |
| } |
| |
| /** Contatenates two different transformations */ |
| template<int OtherMode> |
| inline const typename ei_transform_transform_product_impl< |
| Transform,Transform<Scalar,Dim,OtherMode> >::ResultType |
| operator * (const Transform<Scalar,Dim,OtherMode>& other) const |
| { |
| return ei_transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode> >::run(*this,other); |
| } |
| |
| /** \sa MatrixBase::setIdentity() */ |
| void setIdentity() { m_matrix.setIdentity(); } |
| |
| /** |
| * \brief Returns an identity transformation. |
| * \todo In the future this function should be returning a Transform expression. |
| */ |
| static const Transform Identity() |
| { |
| return Transform(MatrixType::Identity()); |
| } |
| |
| template<typename OtherDerived> |
| inline Transform& scale(const MatrixBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| inline Transform& prescale(const MatrixBase<OtherDerived> &other); |
| |
| inline Transform& scale(Scalar s); |
| inline Transform& prescale(Scalar s); |
| |
| template<typename OtherDerived> |
| inline Transform& translate(const MatrixBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); |
| |
| template<typename RotationType> |
| inline Transform& rotate(const RotationType& rotation); |
| |
| template<typename RotationType> |
| inline Transform& prerotate(const RotationType& rotation); |
| |
| Transform& shear(Scalar sx, Scalar sy); |
| Transform& preshear(Scalar sx, Scalar sy); |
| |
| inline Transform& operator=(const TranslationType& t); |
| inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } |
| inline Transform operator*(const TranslationType& t) const; |
| |
| inline Transform& operator=(const UniformScaling<Scalar>& t); |
| inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } |
| inline Transform operator*(const UniformScaling<Scalar>& s) const; |
| |
| template<typename Derived> |
| inline Transform& operator=(const RotationBase<Derived,Dim>& r); |
| template<typename Derived> |
| inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } |
| template<typename Derived> |
| inline Transform operator*(const RotationBase<Derived,Dim>& r) const; |
| |
| LinearMatrixType rotation() const; |
| template<typename RotationMatrixType, typename ScalingMatrixType> |
| void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; |
| template<typename ScalingMatrixType, typename RotationMatrixType> |
| void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; |
| |
| template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); |
| |
| inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; |
| |
| /** \returns a const pointer to the column major internal matrix */ |
| const Scalar* data() const { return m_matrix.data(); } |
| /** \returns a non-const pointer to the column major internal matrix */ |
| Scalar* data() { return m_matrix.data(); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim,Mode> >::type cast() const |
| { return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim,Mode> >::type(*this); } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit Transform(const Transform<OtherScalarType,Dim,Mode>& other) |
| { m_matrix = other.matrix().template cast<Scalar>(); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const |
| { return m_matrix.isApprox(other.m_matrix, prec); } |
| |
| /** Sets the last row to [0 ... 0 1] |
| */ |
| void makeAffine() |
| { |
| if(int(Mode)!=int(AffineCompact)) |
| { |
| matrix().template block<1,Dim>(Dim,0).setZero(); |
| matrix().coeffRef(Dim,Dim) = 1; |
| } |
| } |
| |
| /** \internal |
| * \returns the Dim x Dim linear part if the transformation is affine, |
| * and the HDim x Dim part for projective transformations. |
| */ |
| inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
| /** \internal |
| * \returns the Dim x Dim linear part if the transformation is affine, |
| * and the HDim x Dim part for projective transformations. |
| */ |
| inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } |
| |
| /** \internal |
| * \returns the translation part if the transformation is affine, |
| * and the last column for projective transformations. |
| */ |
| inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
| /** \internal |
| * \returns the translation part if the transformation is affine, |
| * and the last column for projective transformations. |
| */ |
| inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const |
| { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } |
| |
| |
| #ifdef EIGEN_TRANSFORM_PLUGIN |
| #include EIGEN_TRANSFORM_PLUGIN |
| #endif |
| |
| }; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2> Transform2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3> Transform3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2> Transform2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3> Transform3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,Isometry> Isometry2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,Isometry> Isometry3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,Isometry> Isometry2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,Isometry> Isometry3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2> Affine2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3> Affine3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2> Affine2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3> Affine3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,AffineCompact> AffineCompact2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,AffineCompact> AffineCompact3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,AffineCompact> AffineCompact2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,AffineCompact> AffineCompact3d; |
| |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,2,Projective> Projective2f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<float,3,Projective> Projective3f; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,2,Projective> Projective2d; |
| /** \ingroup Geometry_Module */ |
| typedef Transform<double,3,Projective> Projective3d; |
| |
| /************************** |
| *** Optional QT support *** |
| **************************/ |
| |
| #ifdef EIGEN_QT_SUPPORT |
| /** Initializes \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode>::Transform(const QMatrix& other) |
| { |
| *this = other; |
| } |
| |
| /** Set \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QMatrix& other) |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(), |
| 0, 0, 1; |
| return *this; |
| } |
| |
| /** \returns a QMatrix from \c *this assuming the dimension is 2. |
| * |
| * \warning this conversion might loss data if \c *this is not affine |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| QMatrix Transform<Scalar,Dim,Mode>::toQMatrix(void) const |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), |
| m_matrix.coeff(0,1), m_matrix.coeff(1,1), |
| m_matrix.coeff(0,2), m_matrix.coeff(1,2)); |
| } |
| |
| /** Initializes \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode>::Transform(const QTransform& other) |
| { |
| *this = other; |
| } |
| |
| /** Set \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QTransform& other) |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(), |
| other.m13(), other.m23(), other.m33(); |
| return *this; |
| } |
| |
| /** \returns a QTransform from \c *this assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| QTransform Transform<Scalar,Dim,Mode>::toQTransform(void) const |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return QTransform(matrix.coeff(0,0), matrix.coeff(1,0), matrix.coeff(2,0) |
| matrix.coeff(0,1), matrix.coeff(1,1), matrix.coeff(2,1) |
| matrix.coeff(0,2), matrix.coeff(1,2), matrix.coeff(2,2)); |
| } |
| #endif |
| |
| /********************* |
| *** Procedural API *** |
| *********************/ |
| |
| /** Applies on the right the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa prescale() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::scale(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| linearExt().noalias() = (linearExt() * other.asDiagonal()); |
| return *this; |
| } |
| |
| /** Applies on the right a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa prescale(Scalar) |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::scale(Scalar s) |
| { |
| linearExt() *= s; |
| return *this; |
| } |
| |
| /** Applies on the left the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa scale() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::prescale(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); |
| return *this; |
| } |
| |
| /** Applies on the left a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa scale(Scalar) |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::prescale(Scalar s) |
| { |
| m_matrix.template topRows<Dim>() *= s; |
| return *this; |
| } |
| |
| /** Applies on the right the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa pretranslate() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::translate(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| translationExt() += linearExt() * other; |
| return *this; |
| } |
| |
| /** Applies on the left the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa translate() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::pretranslate(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| if(int(Mode)==int(Projective)) |
| affine() += other * m_matrix.row(Dim); |
| else |
| translation() += other; |
| return *this; |
| } |
| |
| /** Applies on the right the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * The template parameter \a RotationType is the type of the rotation which |
| * must be known by ei_toRotationMatrix<>. |
| * |
| * Natively supported types includes: |
| * - any scalar (2D), |
| * - a Dim x Dim matrix expression, |
| * - a Quaternion (3D), |
| * - a AngleAxis (3D) |
| * |
| * This mechanism is easily extendable to support user types such as Euler angles, |
| * or a pair of Quaternion for 4D rotations. |
| * |
| * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename RotationType> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::rotate(const RotationType& rotation) |
| { |
| linearExt() *= ei_toRotationMatrix<Scalar,Dim>(rotation); |
| return *this; |
| } |
| |
| /** Applies on the left the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * See rotate() for further details. |
| * |
| * \sa rotate() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename RotationType> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::prerotate(const RotationType& rotation) |
| { |
| m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation) |
| * m_matrix.template block<Dim,HDim>(0,0); |
| return *this; |
| } |
| |
| /** Applies on the right the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa preshear() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::shear(Scalar sx, Scalar sy) |
| { |
| EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| VectorType tmp = linear().col(0)*sy + linear().col(1); |
| linear() << linear().col(0) + linear().col(1)*sx, tmp; |
| return *this; |
| } |
| |
| /** Applies on the left the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa shear() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::preshear(Scalar sx, Scalar sy) |
| { |
| EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); |
| return *this; |
| } |
| |
| /****************************************************** |
| *** Scaling, Translation and Rotation compatibility *** |
| ******************************************************/ |
| |
| template<typename Scalar, int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const TranslationType& t) |
| { |
| linear().setIdentity(); |
| translation() = t.vector(); |
| makeAffine(); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const TranslationType& t) const |
| { |
| Transform res = *this; |
| res.translate(t.vector()); |
| return res; |
| } |
| |
| template<typename Scalar, int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const UniformScaling<Scalar>& s) |
| { |
| m_matrix.setZero(); |
| linear().diagonal().fill(s.factor()); |
| makeAffine(); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim, int Mode> |
| inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const UniformScaling<Scalar>& s) const |
| { |
| Transform res = *this; |
| res.scale(s.factor()); |
| return res; |
| } |
| |
| template<typename Scalar, int Dim, int Mode> |
| template<typename Derived> |
| inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const RotationBase<Derived,Dim>& r) |
| { |
| linear() = ei_toRotationMatrix<Scalar,Dim>(r); |
| translation().setZero(); |
| makeAffine(); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim, int Mode> |
| template<typename Derived> |
| inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const RotationBase<Derived,Dim>& r) const |
| { |
| Transform res = *this; |
| res.rotate(r.derived()); |
| return res; |
| } |
| |
| /************************ |
| *** Special functions *** |
| ************************/ |
| |
| /** \returns the rotation part of the transformation |
| * \nonstableyet |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), computeScalingRotation(), class SVD |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| typename Transform<Scalar,Dim,Mode>::LinearMatrixType |
| Transform<Scalar,Dim,Mode>::rotation() const |
| { |
| LinearMatrixType result; |
| computeRotationScaling(&result, (LinearMatrixType*)0); |
| return result; |
| } |
| |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * \nonstableyet |
| * |
| * \svd_module |
| * |
| * \sa computeScalingRotation(), rotation(), class SVD |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename RotationMatrixType, typename ScalingMatrixType> |
| void Transform<Scalar,Dim,Mode>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const |
| { |
| linear().svd().computeRotationScaling(rotation, scaling); |
| } |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * \nonstableyet |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), rotation(), class SVD |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename ScalingMatrixType, typename RotationMatrixType> |
| void Transform<Scalar,Dim,Mode>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const |
| { |
| linear().svd().computeScalingRotation(scaling, rotation); |
| } |
| |
| /** Convenient method to set \c *this from a position, orientation and scale |
| * of a 3D object. |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| Transform<Scalar,Dim,Mode>& |
| Transform<Scalar,Dim,Mode>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) |
| { |
| linear() = ei_toRotationMatrix<Scalar,Dim>(orientation); |
| linear() *= scale.asDiagonal(); |
| translation() = position; |
| makeAffine(); |
| return *this; |
| } |
| |
| // selector needed to avoid taking the inverse of a 3x4 matrix |
| template<typename TransformType, int Mode=TransformType::Mode> |
| struct ei_projective_transform_inverse |
| { |
| static inline void run(const TransformType&, TransformType&) |
| {} |
| }; |
| |
| template<typename TransformType> |
| struct ei_projective_transform_inverse<TransformType, Projective> |
| { |
| static inline void run(const TransformType& m, TransformType& res) |
| { |
| res.matrix() = m.matrix().inverse(); |
| } |
| }; |
| |
| |
| /** \nonstableyet |
| * |
| * \returns the inverse transformation according to some given knowledge |
| * on \c *this. |
| * |
| * \param traits allows to optimize the inversion process when the transformation |
| * is known to be not a general transformation. The possible values are: |
| * - Projective if the transformation is not necessarily affine, i.e., if the |
| * last row is not guaranteed to be [0 ... 0 1] |
| * - Affine is the default, the last row is assumed to be [0 ... 0 1] |
| * - Isometry if the transformation is only a concatenations of translations |
| * and rotations. |
| * |
| * \warning unless \a traits is always set to NoShear or NoScaling, this function |
| * requires the generic inverse method of MatrixBase defined in the LU module. If |
| * you forget to include this module, then you will get hard to debug linking errors. |
| * |
| * \sa MatrixBase::inverse() |
| */ |
| template<typename Scalar, int Dim, int Mode> |
| Transform<Scalar,Dim,Mode> |
| Transform<Scalar,Dim,Mode>::inverse(TransformTraits hint) const |
| { |
| Transform res; |
| if (hint == Projective) |
| { |
| ei_projective_transform_inverse<Transform>::run(*this, res); |
| } |
| else |
| { |
| if (hint == Isometry) |
| { |
| res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); |
| } |
| else if(hint&Affine) |
| { |
| res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); |
| } |
| else |
| { |
| ei_assert(false && "Invalid transform traits in Transform::Inverse"); |
| } |
| // translation and remaining parts |
| res.matrix().template topRightCorner<Dim,1>() |
| = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); |
| if(int(Mode)!=int(AffineCompact)) |
| { |
| res.matrix().template block<1,Dim>(Dim,0).setZero(); |
| res.matrix().coeffRef(Dim,Dim) = 1; |
| } |
| } |
| return res; |
| } |
| |
| /***************************************************** |
| *** Specializations of take affine part *** |
| *****************************************************/ |
| |
| template<typename TransformType> struct ei_transform_take_affine_part { |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename TransformType::AffinePart AffinePart; |
| static inline AffinePart run(MatrixType& m) |
| { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
| static inline const AffinePart run(const MatrixType& m) |
| { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } |
| }; |
| |
| template<typename Scalar, int Dim> |
| struct ei_transform_take_affine_part<Transform<Scalar,Dim,AffineCompact> > { |
| typedef typename Transform<Scalar,Dim,AffineCompact>::MatrixType MatrixType; |
| static inline MatrixType& run(MatrixType& m) { return m; } |
| static inline const MatrixType& run(const MatrixType& m) { return m; } |
| }; |
| |
| /***************************************************** |
| *** Specializations of construct from matrix *** |
| *****************************************************/ |
| |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, Dim,Dim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other) |
| { |
| transform->linear() = other; |
| transform->translation().setZero(); |
| transform->makeAffine(); |
| } |
| }; |
| |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, Dim,HDim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other) |
| { |
| transform->affine() = other; |
| transform->makeAffine(); |
| } |
| }; |
| |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, HDim,HDim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other) |
| { transform->matrix() = other; } |
| }; |
| |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_construct_from_matrix<Other, AffineCompact,Dim,HDim, HDim,HDim> |
| { |
| static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact> *transform, const Other& other) |
| { transform->matrix() = other.template block<Dim,HDim>(0,0); } |
| }; |
| |
| /********************************************************* |
| *** Specializations of operator* with a EigenBase *** |
| *********************************************************/ |
| |
| // ei_general_product_return_type is a generalization of ProductReturnType, for all types (including e.g. DiagonalBase...), |
| // instead of being restricted to MatrixBase. |
| template<typename Lhs, typename Rhs> struct ei_general_product_return_type; |
| template<typename D1, typename D2> struct ei_general_product_return_type<MatrixBase<D1>, MatrixBase<D2> > |
| : ProductReturnType<D1,D2> {}; |
| template<typename Lhs, typename D2> struct ei_general_product_return_type<Lhs, MatrixBase<D2> > |
| { typedef D2 Type; }; |
| template<typename D1, typename Rhs> struct ei_general_product_return_type<MatrixBase<D1>, Rhs > |
| { typedef D1 Type; }; |
| |
| |
| |
| // Projective * set of homogeneous column vectors |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, HDim, Dynamic> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Projective> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.matrix() * other; } |
| }; |
| |
| // Projective * homogeneous column vector |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, HDim, 1> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Projective> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.matrix() * other; } |
| }; |
| |
| // Projective * column vector |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Projective, Dim,HDim, Dim, 1> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Projective> TransformType; |
| typedef Matrix<typename Other::Scalar,HDim,1> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.matrix().template block<HDim,Dim>(0,0) * other + tr.matrix().col(Dim); } |
| }; |
| |
| // Affine * column vector |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,1> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef Matrix<typename Other::Scalar,Dim,1> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.linear() * other + tr.translation(); } |
| }; |
| |
| // Affine * set of column vectors |
| // FIXME use a ReturnByValue to remove the temporary |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,Dynamic> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef Matrix<typename Other::Scalar,Dim,Dynamic> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return (tr.linear() * other).colwise() + tr.translation(); } |
| }; |
| |
| // Affine * homogeneous column vector |
| // FIXME added for backward compatibility, but I'm not sure we should keep it |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, HDim,1> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef Matrix<typename Other::Scalar,HDim,1> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.matrix() * other; } |
| }; |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,AffineCompact, Dim,HDim, HDim,1> |
| { |
| typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; |
| typedef Matrix<typename Other::Scalar,HDim,1> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { |
| ResultType res; |
| res.template head<HDim>() = tr.matrix() * other; |
| res.coeffRef(Dim) = other.coeff(Dim); |
| } |
| }; |
| |
| // T * linear matrix => T |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,Dim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { |
| TransformType res; |
| res.matrix().col(Dim) = tr.matrix().col(Dim); |
| res.linearExt().noalias() = (tr.linearExt() * other); |
| if(Mode==Affine) |
| res.matrix().row(Dim).template head<Dim>() = tr.matrix().row(Dim).template head<Dim>(); |
| return res; |
| } |
| }; |
| |
| // T * affine matrix => T |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, Dim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { |
| TransformType res; |
| const int Rows = Mode==Projective ? HDim : Dim; |
| res.matrix().template block<Rows,HDim>(0,0).noalias() = (tr.linearExt() * other); |
| res.translationExt() += tr.translationExt(); |
| if(Mode!=Affine) |
| res.makeAffine(); |
| return res; |
| } |
| }; |
| |
| // T * generic matrix => Projective |
| template<typename Other, int Mode, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,Mode, Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return ResultType(tr.matrix() * other); } |
| }; |
| |
| // AffineCompact * generic matrix => Projective |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_right_product_impl<Other,AffineCompact, Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; |
| typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { |
| ResultType res; |
| res.affine().noalias() = tr.matrix() * other; |
| res.makeAffine(); |
| return res; |
| } |
| }; |
| |
| |
| // generic HDim x HDim matrix * T => Projective |
| template<typename Other,int Mode, int Dim, int HDim> |
| struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { return ResultType(other * tr.matrix()); } |
| }; |
| |
| // generic HDim x HDim matrix * AffineCompact => Projective |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_left_product_impl<Other,AffineCompact,Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef Transform<typename Other::Scalar,Dim,Projective> ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { |
| ResultType res; |
| res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); |
| res.matrix().col(Dim) += other.col(Dim); |
| return res; |
| } |
| }; |
| |
| // affine matrix * T |
| template<typename Other,int Mode, int Dim, int HDim> |
| struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, Dim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { |
| ResultType res; |
| res.affine().noalias() = other * tr.matrix(); |
| res.matrix().row(Dim) = tr.matrix().row(Dim); |
| return res; |
| } |
| }; |
| |
| // affine matrix * AffineCompact |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_left_product_impl<Other,AffineCompact,Dim,HDim, Dim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const Other& other,const TransformType& tr) |
| { |
| ResultType res; |
| res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); |
| res.translation() += other.col(Dim); |
| return res; |
| } |
| }; |
| |
| // linear matrix * T |
| template<typename Other,int Mode, int Dim, int HDim> |
| struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, Dim,Dim> |
| { |
| typedef Transform<typename Other::Scalar,Dim,Mode> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const Other& other, const TransformType& tr) |
| { |
| TransformType res; |
| if(Mode!=AffineCompact) |
| res.matrix().row(Dim) = tr.matrix().row(Dim); |
| res.matrix().template topRows<Dim>().noalias() |
| = other * tr.matrix().template topRows<Dim>(); |
| return res; |
| } |
| }; |
| |
| /********************************************************** |
| *** Specializations of operator* with another Transform *** |
| **********************************************************/ |
| |
| template<typename Scalar, int Dim, int Mode> |
| struct ei_transform_transform_product_impl<Transform<Scalar,Dim,Mode>,Transform<Scalar,Dim,Mode> > |
| { |
| typedef Transform<Scalar,Dim,Mode> TransformType; |
| typedef TransformType ResultType; |
| static ResultType run(const TransformType& lhs, const TransformType& rhs) |
| { |
| return ResultType(lhs.matrix() * rhs.matrix()); |
| } |
| }; |
| |
| template<typename Scalar, int Dim> |
| struct ei_transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact>,Transform<Scalar,Dim,AffineCompact> > |
| { |
| typedef Transform<Scalar,Dim,AffineCompact> TransformType; |
| typedef TransformType ResultType; |
| static ResultType run(const TransformType& lhs, const TransformType& rhs) |
| { |
| return ei_transform_right_product_impl<typename TransformType::MatrixType, |
| AffineCompact,Dim,Dim+1>::run(lhs,rhs.matrix()); |
| } |
| }; |
| |
| template<typename Scalar, int Dim, int LhsMode, int RhsMode> |
| struct ei_transform_transform_product_impl<Transform<Scalar,Dim,LhsMode>,Transform<Scalar,Dim,RhsMode> > |
| { |
| typedef Transform<Scalar,Dim,LhsMode> Lhs; |
| typedef Transform<Scalar,Dim,RhsMode> Rhs; |
| typedef typename ei_transform_right_product_impl<typename Rhs::MatrixType, |
| LhsMode,Dim,Dim+1>::ResultType ResultType; |
| static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| { |
| return ei_transform_right_product_impl<typename Rhs::MatrixType,LhsMode,Dim,Dim+1>::run(lhs,rhs.matrix()); |
| } |
| }; |
| |
| template<typename Scalar, int Dim> |
| struct ei_transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact>, |
| Transform<Scalar,Dim,Affine> > |
| { |
| typedef Transform<Scalar,Dim,AffineCompact> Lhs; |
| typedef Transform<Scalar,Dim,Affine> Rhs; |
| typedef Transform<Scalar,Dim,AffineCompact> ResultType; |
| static ResultType run(const Lhs& lhs, const Rhs& rhs) |
| { |
| return ResultType(lhs.matrix() * rhs.matrix()); |
| } |
| }; |
| |
| #endif // EIGEN_TRANSFORM_H |