| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| |
| /** \ingroup QR_Module |
| * \nonstableyet |
| * |
| * \class FullPivHouseholderQR |
| * |
| * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting |
| * |
| * \param MatrixType the type of the matrix of which we are computing the QR decomposition |
| * |
| * This class performs a rank-revealing QR decomposition using Householder transformations. |
| * |
| * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal |
| * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. |
| * |
| * \sa MatrixBase::fullPivHouseholderQr() |
| */ |
| template<typename _MatrixType> class FullPivHouseholderQR |
| { |
| public: |
| |
| typedef _MatrixType MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; |
| typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType; |
| typedef Matrix<int, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType; |
| typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; |
| typedef typename ei_plain_col_type<MatrixType, int>::type IntColVectorType; |
| typedef typename ei_plain_row_type<MatrixType>::type RowVectorType; |
| typedef typename ei_plain_col_type<MatrixType>::type ColVectorType; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). |
| */ |
| FullPivHouseholderQR() |
| : m_qr(), |
| m_hCoeffs(), |
| m_rows_transpositions(), |
| m_cols_transpositions(), |
| m_cols_permutation(), |
| m_temp(), |
| m_isInitialized(false) {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa FullPivHouseholderQR() |
| */ |
| FullPivHouseholderQR(int rows, int cols) |
| : m_qr(rows, cols), |
| m_hCoeffs(std::min(rows,cols)), |
| m_rows_transpositions(rows), |
| m_cols_transpositions(cols), |
| m_cols_permutation(cols), |
| m_temp(std::min(rows,cols)), |
| m_isInitialized(false) {} |
| |
| FullPivHouseholderQR(const MatrixType& matrix) |
| : m_qr(matrix.rows(), matrix.cols()), |
| m_hCoeffs(std::min(matrix.rows(), matrix.cols())), |
| m_rows_transpositions(matrix.rows()), |
| m_cols_transpositions(matrix.cols()), |
| m_cols_permutation(matrix.cols()), |
| m_temp(std::min(matrix.rows(), matrix.cols())), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the QR decomposition, if any exists. |
| * |
| * \param b the right-hand-side of the equation to solve. |
| * |
| * \returns a solution. |
| * |
| * \note The case where b is a matrix is not yet implemented. Also, this |
| * code is space inefficient. |
| * |
| * \note_about_checking_solutions |
| * |
| * \note_about_arbitrary_choice_of_solution |
| * |
| * Example: \include FullPivHouseholderQR_solve.cpp |
| * Output: \verbinclude FullPivHouseholderQR_solve.out |
| */ |
| template<typename Rhs> |
| inline const ei_solve_retval<FullPivHouseholderQR, Rhs> |
| solve(const MatrixBase<Rhs>& b) const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return ei_solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived()); |
| } |
| |
| MatrixQType matrixQ(void) const; |
| |
| /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| */ |
| const MatrixType& matrixQR() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_qr; |
| } |
| |
| FullPivHouseholderQR& compute(const MatrixType& matrix); |
| |
| const PermutationType& colsPermutation() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_cols_permutation; |
| } |
| |
| const IntColVectorType& rowsTranspositions() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_rows_transpositions; |
| } |
| |
| /** \returns the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * One way to work around that is to use logAbsDeterminant() instead. |
| * |
| * \sa logAbsDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar absDeterminant() const; |
| |
| /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| * *this is the QR decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the QR decomposition has already been computed. |
| * |
| * \note This is only for square matrices. |
| * |
| * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| * to determinant computation. |
| * |
| * \sa absDeterminant(), MatrixBase::determinant() |
| */ |
| typename MatrixType::RealScalar logAbsDeterminant() const; |
| |
| /** \returns the rank of the matrix of which *this is the QR decomposition. |
| * |
| * \note This is computed at the time of the construction of the QR decomposition. This |
| * method does not perform any further computation. |
| */ |
| inline int rank() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_rank; |
| } |
| |
| /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. |
| * |
| * \note Since the rank is computed at the time of the construction of the QR decomposition, this |
| * method almost does not perform any further computation. |
| */ |
| inline int dimensionOfKernel() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_qr.cols() - m_rank; |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition represents an injective |
| * linear map, i.e. has trivial kernel; false otherwise. |
| * |
| * \note Since the rank is computed at the time of the construction of the QR decomposition, this |
| * method almost does not perform any further computation. |
| */ |
| inline bool isInjective() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_rank == m_qr.cols(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition represents a surjective |
| * linear map; false otherwise. |
| * |
| * \note Since the rank is computed at the time of the construction of the QR decomposition, this |
| * method almost does not perform any further computation. |
| */ |
| inline bool isSurjective() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return m_rank == m_qr.rows(); |
| } |
| |
| /** \returns true if the matrix of which *this is the QR decomposition is invertible. |
| * |
| * \note Since the rank is computed at the time of the construction of the QR decomposition, this |
| * method almost does not perform any further computation. |
| */ |
| inline bool isInvertible() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return isInjective() && isSurjective(); |
| } |
| |
| /** \returns the inverse of the matrix of which *this is the QR decomposition. |
| * |
| * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
| * Use isInvertible() to first determine whether this matrix is invertible. |
| */ inline const |
| ei_solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType> |
| inverse() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| return ei_solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType> |
| (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); |
| } |
| |
| inline int rows() const { return m_qr.rows(); } |
| inline int cols() const { return m_qr.cols(); } |
| const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| |
| protected: |
| MatrixType m_qr; |
| HCoeffsType m_hCoeffs; |
| IntColVectorType m_rows_transpositions; |
| IntRowVectorType m_cols_transpositions; |
| PermutationType m_cols_permutation; |
| RowVectorType m_temp; |
| bool m_isInitialized; |
| RealScalar m_precision; |
| int m_rank; |
| int m_det_pq; |
| }; |
| |
| #ifndef EIGEN_HIDE_HEAVY_CODE |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return ei_abs(m_qr.diagonal().prod()); |
| } |
| |
| template<typename MatrixType> |
| typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); |
| return m_qr.diagonal().cwiseAbs().array().log().sum(); |
| } |
| |
| template<typename MatrixType> |
| FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix) |
| { |
| int rows = matrix.rows(); |
| int cols = matrix.cols(); |
| int size = std::min(rows,cols); |
| m_rank = size; |
| |
| m_qr = matrix; |
| m_hCoeffs.resize(size); |
| |
| m_temp.resize(cols); |
| |
| m_precision = NumTraits<Scalar>::epsilon() * size; |
| |
| m_rows_transpositions.resize(matrix.rows()); |
| m_cols_transpositions.resize(matrix.cols()); |
| int number_of_transpositions = 0; |
| |
| RealScalar biggest(0); |
| |
| for (int k = 0; k < size; ++k) |
| { |
| int row_of_biggest_in_corner, col_of_biggest_in_corner; |
| RealScalar biggest_in_corner; |
| |
| biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k) |
| .cwiseAbs() |
| .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
| row_of_biggest_in_corner += k; |
| col_of_biggest_in_corner += k; |
| if(k==0) biggest = biggest_in_corner; |
| |
| // if the corner is negligible, then we have less than full rank, and we can finish early |
| if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) |
| { |
| m_rank = k; |
| for(int i = k; i < size; i++) |
| { |
| m_rows_transpositions.coeffRef(i) = i; |
| m_cols_transpositions.coeffRef(i) = i; |
| m_hCoeffs.coeffRef(i) = Scalar(0); |
| } |
| break; |
| } |
| |
| m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; |
| m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; |
| if(k != row_of_biggest_in_corner) { |
| m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); |
| ++number_of_transpositions; |
| } |
| if(k != col_of_biggest_in_corner) { |
| m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); |
| ++number_of_transpositions; |
| } |
| |
| RealScalar beta; |
| m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
| m_qr.coeffRef(k,k) = beta; |
| |
| m_qr.bottomRightCorner(rows-k, cols-k-1) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); |
| } |
| |
| m_cols_permutation.setIdentity(cols); |
| for(int k = 0; k < size; ++k) |
| m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); |
| |
| m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
| m_isInitialized = true; |
| |
| return *this; |
| } |
| |
| template<typename _MatrixType, typename Rhs> |
| struct ei_solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs> |
| : ei_solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs> |
| { |
| EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| const int rows = dec().rows(), cols = dec().cols(); |
| ei_assert(rhs().rows() == rows); |
| |
| // FIXME introduce nonzeroPivots() and use it here. and more generally, |
| // make the same improvements in this dec as in FullPivLU. |
| if(dec().rank()==0) |
| { |
| dst.setZero(); |
| return; |
| } |
| |
| typename Rhs::PlainObject c(rhs()); |
| |
| Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols()); |
| for (int k = 0; k < dec().rank(); ++k) |
| { |
| int remainingSize = rows-k; |
| c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k))); |
| c.bottomRightCorner(remainingSize, rhs().cols()) |
| .applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1), |
| dec().hCoeffs().coeff(k), &temp.coeffRef(0)); |
| } |
| |
| if(!dec().isSurjective()) |
| { |
| // is c is in the image of R ? |
| RealScalar biggest_in_upper_part_of_c = c.topRows( dec().rank() ).cwiseAbs().maxCoeff(); |
| RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff(); |
| // FIXME brain dead |
| const RealScalar m_precision = NumTraits<Scalar>::epsilon() * std::min(rows,cols); |
| if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision)) |
| return; |
| } |
| dec().matrixQR() |
| .topLeftCorner(dec().rank(), dec().rank()) |
| .template triangularView<Upper>() |
| .solveInPlace(c.topRows(dec().rank())); |
| |
| for(int i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); |
| for(int i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); |
| } |
| }; |
| |
| /** \returns the matrix Q */ |
| template<typename MatrixType> |
| typename FullPivHouseholderQR<MatrixType>::MatrixQType FullPivHouseholderQR<MatrixType>::matrixQ() const |
| { |
| ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized."); |
| // compute the product H'_0 H'_1 ... H'_n-1, |
| // where H_k is the k-th Householder transformation I - h_k v_k v_k' |
| // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] |
| int rows = m_qr.rows(); |
| int cols = m_qr.cols(); |
| int size = std::min(rows,cols); |
| MatrixQType res = MatrixQType::Identity(rows, rows); |
| Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows); |
| for (int k = size-1; k >= 0; k--) |
| { |
| res.block(k, k, rows-k, rows-k) |
| .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k)); |
| res.row(k).swap(res.row(m_rows_transpositions.coeff(k))); |
| } |
| return res; |
| } |
| |
| #endif // EIGEN_HIDE_HEAVY_CODE |
| |
| /** \return the full-pivoting Householder QR decomposition of \c *this. |
| * |
| * \sa class FullPivHouseholderQR |
| */ |
| template<typename Derived> |
| const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::fullPivHouseholderQr() const |
| { |
| return FullPivHouseholderQR<PlainObject>(eval()); |
| } |
| |
| #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |