blob: 0195e13305feb37c8c0862d817f7f66f6e40ae4e [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
/** \ingroup QR_Module
* \nonstableyet
*
* \class FullPivHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition using Householder transformations.
*
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
*
* \sa MatrixBase::fullPivHouseholderQr()
*/
template<typename _MatrixType> class FullPivHouseholderQR
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
typedef typename ei_plain_diag_type<MatrixType>::type HCoeffsType;
typedef Matrix<int, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
typedef typename ei_plain_col_type<MatrixType, int>::type IntColVectorType;
typedef typename ei_plain_row_type<MatrixType>::type RowVectorType;
typedef typename ei_plain_col_type<MatrixType>::type ColVectorType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
*/
FullPivHouseholderQR()
: m_qr(),
m_hCoeffs(),
m_rows_transpositions(),
m_cols_transpositions(),
m_cols_permutation(),
m_temp(),
m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa FullPivHouseholderQR()
*/
FullPivHouseholderQR(int rows, int cols)
: m_qr(rows, cols),
m_hCoeffs(std::min(rows,cols)),
m_rows_transpositions(rows),
m_cols_transpositions(cols),
m_cols_permutation(cols),
m_temp(std::min(rows,cols)),
m_isInitialized(false) {}
FullPivHouseholderQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs(std::min(matrix.rows(), matrix.cols())),
m_rows_transpositions(matrix.rows()),
m_cols_transpositions(matrix.cols()),
m_cols_permutation(matrix.cols()),
m_temp(std::min(matrix.rows(), matrix.cols())),
m_isInitialized(false)
{
compute(matrix);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* *this is the QR decomposition, if any exists.
*
* \param b the right-hand-side of the equation to solve.
*
* \returns a solution.
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
*
* Example: \include FullPivHouseholderQR_solve.cpp
* Output: \verbinclude FullPivHouseholderQR_solve.out
*/
template<typename Rhs>
inline const ei_solve_retval<FullPivHouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return ei_solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
}
MatrixQType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_qr;
}
FullPivHouseholderQR& compute(const MatrixType& matrix);
const PermutationType& colsPermutation() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_cols_permutation;
}
const IntColVectorType& rowsTranspositions() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_rows_transpositions;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This is computed at the time of the construction of the QR decomposition. This
* method does not perform any further computation.
*/
inline int rank() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_rank;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline int dimensionOfKernel() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_qr.cols() - m_rank;
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInjective() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_rank == m_qr.cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isSurjective() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_rank == m_qr.rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note Since the rank is computed at the time of the construction of the QR decomposition, this
* method almost does not perform any further computation.
*/
inline bool isInvertible() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*/ inline const
ei_solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
inverse() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return ei_solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
}
inline int rows() const { return m_qr.rows(); }
inline int cols() const { return m_qr.cols(); }
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
protected:
MatrixType m_qr;
HCoeffsType m_hCoeffs;
IntColVectorType m_rows_transpositions;
IntRowVectorType m_cols_transpositions;
PermutationType m_cols_permutation;
RowVectorType m_temp;
bool m_isInitialized;
RealScalar m_precision;
int m_rank;
int m_det_pq;
};
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return ei_abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
ei_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwiseAbs().array().log().sum();
}
template<typename MatrixType>
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
int rows = matrix.rows();
int cols = matrix.cols();
int size = std::min(rows,cols);
m_rank = size;
m_qr = matrix;
m_hCoeffs.resize(size);
m_temp.resize(cols);
m_precision = NumTraits<Scalar>::epsilon() * size;
m_rows_transpositions.resize(matrix.rows());
m_cols_transpositions.resize(matrix.cols());
int number_of_transpositions = 0;
RealScalar biggest(0);
for (int k = 0; k < size; ++k)
{
int row_of_biggest_in_corner, col_of_biggest_in_corner;
RealScalar biggest_in_corner;
biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
.cwiseAbs()
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
row_of_biggest_in_corner += k;
col_of_biggest_in_corner += k;
if(k==0) biggest = biggest_in_corner;
// if the corner is negligible, then we have less than full rank, and we can finish early
if(ei_isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
{
m_rank = k;
for(int i = k; i < size; i++)
{
m_rows_transpositions.coeffRef(i) = i;
m_cols_transpositions.coeffRef(i) = i;
m_hCoeffs.coeffRef(i) = Scalar(0);
}
break;
}
m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
if(k != row_of_biggest_in_corner) {
m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
++number_of_transpositions;
}
if(k != col_of_biggest_in_corner) {
m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
++number_of_transpositions;
}
RealScalar beta;
m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
m_qr.coeffRef(k,k) = beta;
m_qr.bottomRightCorner(rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
}
m_cols_permutation.setIdentity(cols);
for(int k = 0; k < size; ++k)
m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
return *this;
}
template<typename _MatrixType, typename Rhs>
struct ei_solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
: ei_solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
{
EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
const int rows = dec().rows(), cols = dec().cols();
ei_assert(rhs().rows() == rows);
// FIXME introduce nonzeroPivots() and use it here. and more generally,
// make the same improvements in this dec as in FullPivLU.
if(dec().rank()==0)
{
dst.setZero();
return;
}
typename Rhs::PlainObject c(rhs());
Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
for (int k = 0; k < dec().rank(); ++k)
{
int remainingSize = rows-k;
c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
c.bottomRightCorner(remainingSize, rhs().cols())
.applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
dec().hCoeffs().coeff(k), &temp.coeffRef(0));
}
if(!dec().isSurjective())
{
// is c is in the image of R ?
RealScalar biggest_in_upper_part_of_c = c.topRows( dec().rank() ).cwiseAbs().maxCoeff();
RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
// FIXME brain dead
const RealScalar m_precision = NumTraits<Scalar>::epsilon() * std::min(rows,cols);
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
return;
}
dec().matrixQR()
.topLeftCorner(dec().rank(), dec().rank())
.template triangularView<Upper>()
.solveInPlace(c.topRows(dec().rank()));
for(int i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
for(int i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
}
};
/** \returns the matrix Q */
template<typename MatrixType>
typename FullPivHouseholderQR<MatrixType>::MatrixQType FullPivHouseholderQR<MatrixType>::matrixQ() const
{
ei_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
// compute the product H'_0 H'_1 ... H'_n-1,
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
int rows = m_qr.rows();
int cols = m_qr.cols();
int size = std::min(rows,cols);
MatrixQType res = MatrixQType::Identity(rows, rows);
Matrix<Scalar,1,MatrixType::RowsAtCompileTime> temp(rows);
for (int k = size-1; k >= 0; k--)
{
res.block(k, k, rows-k, rows-k)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), ei_conj(m_hCoeffs.coeff(k)), &temp.coeffRef(k));
res.row(k).swap(res.row(m_rows_transpositions.coeff(k)));
}
return res;
}
#endif // EIGEN_HIDE_HEAVY_CODE
/** \return the full-pivoting Householder QR decomposition of \c *this.
*
* \sa class FullPivHouseholderQR
*/
template<typename Derived>
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::fullPivHouseholderQr() const
{
return FullPivHouseholderQR<PlainObject>(eval());
}
#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H