| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_TRIDIAGONALIZATION_H |
| #define EIGEN_TRIDIAGONALIZATION_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; |
| template<typename MatrixType> |
| struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > |
| : public traits<typename MatrixType::PlainObject> |
| { |
| typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix? |
| enum { Flags = 0 }; |
| }; |
| |
| template<typename MatrixType, typename CoeffVectorType> |
| void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); |
| } |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * |
| * \class Tridiagonalization |
| * |
| * \brief Tridiagonal decomposition of a selfadjoint matrix |
| * |
| * \tparam _MatrixType the type of the matrix of which we are computing the |
| * tridiagonal decomposition; this is expected to be an instantiation of the |
| * Matrix class template. |
| * |
| * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: |
| * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. |
| * |
| * A tridiagonal matrix is a matrix which has nonzero elements only on the |
| * main diagonal and the first diagonal below and above it. The Hessenberg |
| * decomposition of a selfadjoint matrix is in fact a tridiagonal |
| * decomposition. This class is used in SelfAdjointEigenSolver to compute the |
| * eigenvalues and eigenvectors of a selfadjoint matrix. |
| * |
| * Call the function compute() to compute the tridiagonal decomposition of a |
| * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) |
| * constructor which computes the tridiagonal Schur decomposition at |
| * construction time. Once the decomposition is computed, you can use the |
| * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the |
| * decomposition. |
| * |
| * The documentation of Tridiagonalization(const MatrixType&) contains an |
| * example of the typical use of this class. |
| * |
| * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver |
| */ |
| template<typename _MatrixType> class Tridiagonalization |
| { |
| public: |
| |
| /** \brief Synonym for the template parameter \p _MatrixType. */ |
| typedef _MatrixType MatrixType; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| |
| enum { |
| Size = MatrixType::RowsAtCompileTime, |
| SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), |
| Options = MatrixType::Options, |
| MaxSize = MatrixType::MaxRowsAtCompileTime, |
| MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) |
| }; |
| |
| typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; |
| typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; |
| typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; |
| typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; |
| typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; |
| |
| typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, |
| const Diagonal<const MatrixType> |
| >::type DiagonalReturnType; |
| |
| typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type, |
| const Diagonal<const MatrixType, -1> |
| >::type SubDiagonalReturnType; |
| |
| /** \brief Return type of matrixQ() */ |
| typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; |
| |
| /** \brief Default constructor. |
| * |
| * \param [in] size Positive integer, size of the matrix whose tridiagonal |
| * decomposition will be computed. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via compute(). The \p size parameter is only |
| * used as a hint. It is not an error to give a wrong \p size, but it may |
| * impair performance. |
| * |
| * \sa compute() for an example. |
| */ |
| explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) |
| : m_matrix(size,size), |
| m_hCoeffs(size > 1 ? size-1 : 1), |
| m_isInitialized(false) |
| {} |
| |
| /** \brief Constructor; computes tridiagonal decomposition of given matrix. |
| * |
| * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
| * is to be computed. |
| * |
| * This constructor calls compute() to compute the tridiagonal decomposition. |
| * |
| * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp |
| * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out |
| */ |
| template<typename InputType> |
| explicit Tridiagonalization(const EigenBase<InputType>& matrix) |
| : m_matrix(matrix.derived()), |
| m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), |
| m_isInitialized(false) |
| { |
| internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); |
| m_isInitialized = true; |
| } |
| |
| /** \brief Computes tridiagonal decomposition of given matrix. |
| * |
| * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition |
| * is to be computed. |
| * \returns Reference to \c *this |
| * |
| * The tridiagonal decomposition is computed by bringing the columns of |
| * the matrix successively in the required form using Householder |
| * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes |
| * the size of the given matrix. |
| * |
| * This method reuses of the allocated data in the Tridiagonalization |
| * object, if the size of the matrix does not change. |
| * |
| * Example: \include Tridiagonalization_compute.cpp |
| * Output: \verbinclude Tridiagonalization_compute.out |
| */ |
| template<typename InputType> |
| Tridiagonalization& compute(const EigenBase<InputType>& matrix) |
| { |
| m_matrix = matrix.derived(); |
| m_hCoeffs.resize(matrix.rows()-1, 1); |
| internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| /** \brief Returns the Householder coefficients. |
| * |
| * \returns a const reference to the vector of Householder coefficients |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * The Householder coefficients allow the reconstruction of the matrix |
| * \f$ Q \f$ in the tridiagonal decomposition from the packed data. |
| * |
| * Example: \include Tridiagonalization_householderCoefficients.cpp |
| * Output: \verbinclude Tridiagonalization_householderCoefficients.out |
| * |
| * \sa packedMatrix(), \ref Householder_Module "Householder module" |
| */ |
| inline CoeffVectorType householderCoefficients() const |
| { |
| eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| return m_hCoeffs; |
| } |
| |
| /** \brief Returns the internal representation of the decomposition |
| * |
| * \returns a const reference to a matrix with the internal representation |
| * of the decomposition. |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * The returned matrix contains the following information: |
| * - the strict upper triangular part is equal to the input matrix A. |
| * - the diagonal and lower sub-diagonal represent the real tridiagonal |
| * symmetric matrix T. |
| * - the rest of the lower part contains the Householder vectors that, |
| * combined with Householder coefficients returned by |
| * householderCoefficients(), allows to reconstruct the matrix Q as |
| * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
| * Here, the matrices \f$ H_i \f$ are the Householder transformations |
| * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
| * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and |
| * \f$ v_i \f$ is the Householder vector defined by |
| * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ |
| * with M the matrix returned by this function. |
| * |
| * See LAPACK for further details on this packed storage. |
| * |
| * Example: \include Tridiagonalization_packedMatrix.cpp |
| * Output: \verbinclude Tridiagonalization_packedMatrix.out |
| * |
| * \sa householderCoefficients() |
| */ |
| inline const MatrixType& packedMatrix() const |
| { |
| eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| return m_matrix; |
| } |
| |
| /** \brief Returns the unitary matrix Q in the decomposition |
| * |
| * \returns object representing the matrix Q |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * This function returns a light-weight object of template class |
| * HouseholderSequence. You can either apply it directly to a matrix or |
| * you can convert it to a matrix of type #MatrixType. |
| * |
| * \sa Tridiagonalization(const MatrixType&) for an example, |
| * matrixT(), class HouseholderSequence |
| */ |
| HouseholderSequenceType matrixQ() const |
| { |
| eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) |
| .setLength(m_matrix.rows() - 1) |
| .setShift(1); |
| } |
| |
| /** \brief Returns an expression of the tridiagonal matrix T in the decomposition |
| * |
| * \returns expression object representing the matrix T |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * Currently, this function can be used to extract the matrix T from internal |
| * data and copy it to a dense matrix object. In most cases, it may be |
| * sufficient to directly use the packed matrix or the vector expressions |
| * returned by diagonal() and subDiagonal() instead of creating a new |
| * dense copy matrix with this function. |
| * |
| * \sa Tridiagonalization(const MatrixType&) for an example, |
| * matrixQ(), packedMatrix(), diagonal(), subDiagonal() |
| */ |
| MatrixTReturnType matrixT() const |
| { |
| eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| return MatrixTReturnType(m_matrix.real()); |
| } |
| |
| /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. |
| * |
| * \returns expression representing the diagonal of T |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * Example: \include Tridiagonalization_diagonal.cpp |
| * Output: \verbinclude Tridiagonalization_diagonal.out |
| * |
| * \sa matrixT(), subDiagonal() |
| */ |
| DiagonalReturnType diagonal() const; |
| |
| /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. |
| * |
| * \returns expression representing the subdiagonal of T |
| * |
| * \pre Either the constructor Tridiagonalization(const MatrixType&) or |
| * the member function compute(const MatrixType&) has been called before |
| * to compute the tridiagonal decomposition of a matrix. |
| * |
| * \sa diagonal() for an example, matrixT() |
| */ |
| SubDiagonalReturnType subDiagonal() const; |
| |
| protected: |
| |
| MatrixType m_matrix; |
| CoeffVectorType m_hCoeffs; |
| bool m_isInitialized; |
| }; |
| |
| template<typename MatrixType> |
| typename Tridiagonalization<MatrixType>::DiagonalReturnType |
| Tridiagonalization<MatrixType>::diagonal() const |
| { |
| eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| return m_matrix.diagonal().real(); |
| } |
| |
| template<typename MatrixType> |
| typename Tridiagonalization<MatrixType>::SubDiagonalReturnType |
| Tridiagonalization<MatrixType>::subDiagonal() const |
| { |
| eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); |
| return m_matrix.template diagonal<-1>().real(); |
| } |
| |
| namespace internal { |
| |
| /** \internal |
| * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. |
| * |
| * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. |
| * On output, the strict upper part is left unchanged, and the lower triangular part |
| * represents the T and Q matrices in packed format has detailed below. |
| * \param[out] hCoeffs returned Householder coefficients (see below) |
| * |
| * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal |
| * and lower sub-diagonal of the matrix \a matA. |
| * The unitary matrix Q is represented in a compact way as a product of |
| * Householder reflectors \f$ H_i \f$ such that: |
| * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. |
| * The Householder reflectors are defined as |
| * \f$ H_i = (I - h_i v_i v_i^T) \f$ |
| * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and |
| * \f$ v_i \f$ is the Householder vector defined by |
| * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. |
| * |
| * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. |
| * |
| * \sa Tridiagonalization::packedMatrix() |
| */ |
| template<typename MatrixType, typename CoeffVectorType> |
| void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) |
| { |
| using numext::conj; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| Index n = matA.rows(); |
| eigen_assert(n==matA.cols()); |
| eigen_assert(n==hCoeffs.size()+1 || n==1); |
| |
| for (Index i = 0; i<n-1; ++i) |
| { |
| Index remainingSize = n-i-1; |
| RealScalar beta; |
| Scalar h; |
| matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); |
| |
| // Apply similarity transformation to remaining columns, |
| // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) |
| matA.col(i).coeffRef(i+1) = 1; |
| |
| hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() |
| * (conj(h) * matA.col(i).tail(remainingSize))); |
| |
| hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); |
| |
| matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() |
| .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); |
| |
| matA.col(i).coeffRef(i+1) = beta; |
| hCoeffs.coeffRef(i) = h; |
| } |
| } |
| |
| // forward declaration, implementation at the end of this file |
| template<typename MatrixType, |
| int Size=MatrixType::ColsAtCompileTime, |
| bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> |
| struct tridiagonalization_inplace_selector; |
| |
| /** \brief Performs a full tridiagonalization in place |
| * |
| * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal |
| * decomposition is to be computed. Only the lower triangular part referenced. |
| * The rest is left unchanged. On output, the orthogonal matrix Q |
| * in the decomposition if \p extractQ is true. |
| * \param[out] diag The diagonal of the tridiagonal matrix T in the |
| * decomposition. |
| * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in |
| * the decomposition. |
| * \param[in] extractQ If true, the orthogonal matrix Q in the |
| * decomposition is computed and stored in \p mat. |
| * |
| * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place |
| * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real |
| * symmetric tridiagonal matrix. |
| * |
| * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If |
| * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower |
| * part of the matrix \p mat is destroyed. |
| * |
| * The vectors \p diag and \p subdiag are not resized. The function |
| * assumes that they are already of the correct size. The length of the |
| * vector \p diag should equal the number of rows in \p mat, and the |
| * length of the vector \p subdiag should be one left. |
| * |
| * This implementation contains an optimized path for 3-by-3 matrices |
| * which is especially useful for plane fitting. |
| * |
| * \note Currently, it requires two temporary vectors to hold the intermediate |
| * Householder coefficients, and to reconstruct the matrix Q from the Householder |
| * reflectors. |
| * |
| * Example (this uses the same matrix as the example in |
| * Tridiagonalization::Tridiagonalization(const MatrixType&)): |
| * \include Tridiagonalization_decomposeInPlace.cpp |
| * Output: \verbinclude Tridiagonalization_decomposeInPlace.out |
| * |
| * \sa class Tridiagonalization |
| */ |
| template<typename MatrixType, typename DiagonalType, typename SubDiagonalType> |
| void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); |
| tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ); |
| } |
| |
| /** \internal |
| * General full tridiagonalization |
| */ |
| template<typename MatrixType, int Size, bool IsComplex> |
| struct tridiagonalization_inplace_selector |
| { |
| typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType; |
| typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; |
| template<typename DiagonalType, typename SubDiagonalType> |
| static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| CoeffVectorType hCoeffs(mat.cols()-1); |
| tridiagonalization_inplace(mat,hCoeffs); |
| diag = mat.diagonal().real(); |
| subdiag = mat.template diagonal<-1>().real(); |
| if(extractQ) |
| mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) |
| .setLength(mat.rows() - 1) |
| .setShift(1); |
| } |
| }; |
| |
| /** \internal |
| * Specialization for 3x3 real matrices. |
| * Especially useful for plane fitting. |
| */ |
| template<typename MatrixType> |
| struct tridiagonalization_inplace_selector<MatrixType,3,false> |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| template<typename DiagonalType, typename SubDiagonalType> |
| static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) |
| { |
| using std::sqrt; |
| const RealScalar tol = (std::numeric_limits<RealScalar>::min)(); |
| diag[0] = mat(0,0); |
| RealScalar v1norm2 = numext::abs2(mat(2,0)); |
| if(v1norm2 <= tol) |
| { |
| diag[1] = mat(1,1); |
| diag[2] = mat(2,2); |
| subdiag[0] = mat(1,0); |
| subdiag[1] = mat(2,1); |
| if (extractQ) |
| mat.setIdentity(); |
| } |
| else |
| { |
| RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); |
| RealScalar invBeta = RealScalar(1)/beta; |
| Scalar m01 = mat(1,0) * invBeta; |
| Scalar m02 = mat(2,0) * invBeta; |
| Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); |
| diag[1] = mat(1,1) + m02*q; |
| diag[2] = mat(2,2) - m02*q; |
| subdiag[0] = beta; |
| subdiag[1] = mat(2,1) - m01 * q; |
| if (extractQ) |
| { |
| mat << 1, 0, 0, |
| 0, m01, m02, |
| 0, m02, -m01; |
| } |
| } |
| } |
| }; |
| |
| /** \internal |
| * Trivial specialization for 1x1 matrices |
| */ |
| template<typename MatrixType, bool IsComplex> |
| struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| template<typename DiagonalType, typename SubDiagonalType> |
| static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) |
| { |
| diag(0,0) = numext::real(mat(0,0)); |
| if(extractQ) |
| mat(0,0) = Scalar(1); |
| } |
| }; |
| |
| /** \internal |
| * \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * \brief Expression type for return value of Tridiagonalization::matrixT() |
| * |
| * \tparam MatrixType type of underlying dense matrix |
| */ |
| template<typename MatrixType> struct TridiagonalizationMatrixTReturnType |
| : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > |
| { |
| public: |
| /** \brief Constructor. |
| * |
| * \param[in] mat The underlying dense matrix |
| */ |
| TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } |
| |
| template <typename ResultType> |
| inline void evalTo(ResultType& result) const |
| { |
| result.setZero(); |
| result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); |
| result.diagonal() = m_matrix.diagonal(); |
| result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); |
| } |
| |
| Index rows() const { return m_matrix.rows(); } |
| Index cols() const { return m_matrix.cols(); } |
| |
| protected: |
| typename MatrixType::Nested m_matrix; |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_TRIDIAGONALIZATION_H |