| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H |
| #define EIGEN_HOUSEHOLDER_SEQUENCE_H |
| |
| namespace Eigen { |
| |
| /** \ingroup Householder_Module |
| * \householder_module |
| * \class HouseholderSequence |
| * \brief Sequence of Householder reflections acting on subspaces with decreasing size |
| * \tparam VectorsType type of matrix containing the Householder vectors |
| * \tparam CoeffsType type of vector containing the Householder coefficients |
| * \tparam Side either OnTheLeft (the default) or OnTheRight |
| * |
| * This class represents a product sequence of Householder reflections where the first Householder reflection |
| * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by |
| * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace |
| * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but |
| * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections |
| * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods |
| * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), |
| * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. |
| * |
| * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the |
| * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i |
| * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ |
| * v_i \f$ is a vector of the form |
| * \f[ |
| * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
| * \f] |
| * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. |
| * |
| * Typical usages are listed below, where H is a HouseholderSequence: |
| * \code |
| * A.applyOnTheRight(H); // A = A * H |
| * A.applyOnTheLeft(H); // A = H * A |
| * A.applyOnTheRight(H.adjoint()); // A = A * H^* |
| * A.applyOnTheLeft(H.adjoint()); // A = H^* * A |
| * MatrixXd Q = H; // conversion to a dense matrix |
| * \endcode |
| * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. |
| * |
| * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. |
| * |
| * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
| */ |
| |
| namespace internal { |
| |
| template<typename VectorsType, typename CoeffsType, int Side> |
| struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| { |
| typedef typename VectorsType::Scalar Scalar; |
| typedef typename VectorsType::StorageIndex StorageIndex; |
| typedef typename VectorsType::StorageKind StorageKind; |
| enum { |
| RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime |
| : traits<VectorsType>::ColsAtCompileTime, |
| ColsAtCompileTime = RowsAtCompileTime, |
| MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime |
| : traits<VectorsType>::MaxColsAtCompileTime, |
| MaxColsAtCompileTime = MaxRowsAtCompileTime, |
| Flags = 0 |
| }; |
| }; |
| |
| struct HouseholderSequenceShape {}; |
| |
| template<typename VectorsType, typename CoeffsType, int Side> |
| struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| { |
| typedef HouseholderSequenceShape Shape; |
| }; |
| |
| template<typename VectorsType, typename CoeffsType, int Side> |
| struct hseq_side_dependent_impl |
| { |
| typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; |
| typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; |
| static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
| { |
| Index start = k+1+h.m_shift; |
| return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1); |
| } |
| }; |
| |
| template<typename VectorsType, typename CoeffsType> |
| struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> |
| { |
| typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; |
| typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; |
| static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
| { |
| Index start = k+1+h.m_shift; |
| return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose(); |
| } |
| }; |
| |
| template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type |
| { |
| typedef typename scalar_product_traits<OtherScalarType, typename MatrixType::Scalar>::ReturnType |
| ResultScalar; |
| typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
| 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type; |
| }; |
| |
| } // end namespace internal |
| |
| template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence |
| : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| { |
| typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType; |
| |
| public: |
| enum { |
| RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, |
| ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, |
| MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime |
| }; |
| typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; |
| |
| typedef HouseholderSequence< |
| typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, |
| VectorsType>::type, |
| typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, |
| CoeffsType>::type, |
| Side |
| > ConjugateReturnType; |
| |
| /** \brief Constructor. |
| * \param[in] v %Matrix containing the essential parts of the Householder vectors |
| * \param[in] h Vector containing the Householder coefficients |
| * |
| * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The |
| * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th |
| * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the |
| * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many |
| * Householder reflections as there are columns. |
| * |
| * \note The %HouseholderSequence object stores \p v and \p h by reference. |
| * |
| * Example: \include HouseholderSequence_HouseholderSequence.cpp |
| * Output: \verbinclude HouseholderSequence_HouseholderSequence.out |
| * |
| * \sa setLength(), setShift() |
| */ |
| HouseholderSequence(const VectorsType& v, const CoeffsType& h) |
| : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()), |
| m_shift(0) |
| { |
| } |
| |
| /** \brief Copy constructor. */ |
| HouseholderSequence(const HouseholderSequence& other) |
| : m_vectors(other.m_vectors), |
| m_coeffs(other.m_coeffs), |
| m_trans(other.m_trans), |
| m_length(other.m_length), |
| m_shift(other.m_shift) |
| { |
| } |
| |
| /** \brief Number of rows of transformation viewed as a matrix. |
| * \returns Number of rows |
| * \details This equals the dimension of the space that the transformation acts on. |
| */ |
| Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } |
| |
| /** \brief Number of columns of transformation viewed as a matrix. |
| * \returns Number of columns |
| * \details This equals the dimension of the space that the transformation acts on. |
| */ |
| Index cols() const { return rows(); } |
| |
| /** \brief Essential part of a Householder vector. |
| * \param[in] k Index of Householder reflection |
| * \returns Vector containing non-trivial entries of k-th Householder vector |
| * |
| * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of |
| * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector |
| * \f[ |
| * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
| * \f] |
| * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v |
| * passed to the constructor. |
| * |
| * \sa setShift(), shift() |
| */ |
| const EssentialVectorType essentialVector(Index k) const |
| { |
| eigen_assert(k >= 0 && k < m_length); |
| return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k); |
| } |
| |
| /** \brief %Transpose of the Householder sequence. */ |
| HouseholderSequence transpose() const |
| { |
| return HouseholderSequence(*this).setTrans(!m_trans); |
| } |
| |
| /** \brief Complex conjugate of the Householder sequence. */ |
| ConjugateReturnType conjugate() const |
| { |
| return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) |
| .setTrans(m_trans) |
| .setLength(m_length) |
| .setShift(m_shift); |
| } |
| |
| /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ |
| ConjugateReturnType adjoint() const |
| { |
| return conjugate().setTrans(!m_trans); |
| } |
| |
| /** \brief Inverse of the Householder sequence (equals the adjoint). */ |
| ConjugateReturnType inverse() const { return adjoint(); } |
| |
| /** \internal */ |
| template<typename DestType> inline void evalTo(DestType& dst) const |
| { |
| Matrix<Scalar, DestType::RowsAtCompileTime, 1, |
| AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows()); |
| evalTo(dst, workspace); |
| } |
| |
| /** \internal */ |
| template<typename Dest, typename Workspace> |
| void evalTo(Dest& dst, Workspace& workspace) const |
| { |
| workspace.resize(rows()); |
| Index vecs = m_length; |
| if( internal::is_same<typename internal::remove_all<VectorsType>::type,Dest>::value |
| && internal::extract_data(dst) == internal::extract_data(m_vectors)) |
| { |
| // in-place |
| dst.diagonal().setOnes(); |
| dst.template triangularView<StrictlyUpper>().setZero(); |
| for(Index k = vecs-1; k >= 0; --k) |
| { |
| Index cornerSize = rows() - k - m_shift; |
| if(m_trans) |
| dst.bottomRightCorner(cornerSize, cornerSize) |
| .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
| else |
| dst.bottomRightCorner(cornerSize, cornerSize) |
| .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
| |
| // clear the off diagonal vector |
| dst.col(k).tail(rows()-k-1).setZero(); |
| } |
| // clear the remaining columns if needed |
| for(Index k = 0; k<cols()-vecs ; ++k) |
| dst.col(k).tail(rows()-k-1).setZero(); |
| } |
| else |
| { |
| dst.setIdentity(rows(), rows()); |
| for(Index k = vecs-1; k >= 0; --k) |
| { |
| Index cornerSize = rows() - k - m_shift; |
| if(m_trans) |
| dst.bottomRightCorner(cornerSize, cornerSize) |
| .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
| else |
| dst.bottomRightCorner(cornerSize, cornerSize) |
| .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
| } |
| } |
| } |
| |
| /** \internal */ |
| template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const |
| { |
| Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows()); |
| applyThisOnTheRight(dst, workspace); |
| } |
| |
| /** \internal */ |
| template<typename Dest, typename Workspace> |
| inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const |
| { |
| workspace.resize(dst.rows()); |
| for(Index k = 0; k < m_length; ++k) |
| { |
| Index actual_k = m_trans ? m_length-k-1 : k; |
| dst.rightCols(rows()-m_shift-actual_k) |
| .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
| } |
| } |
| |
| /** \internal */ |
| template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const |
| { |
| Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace(dst.cols()); |
| applyThisOnTheLeft(dst, workspace); |
| } |
| |
| /** \internal */ |
| template<typename Dest, typename Workspace> |
| inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const |
| { |
| const Index BlockSize = 48; |
| // if the entries are large enough, then apply the reflectors by block |
| if(m_length>=BlockSize && dst.cols()>1) |
| { |
| for(Index i = 0; i < m_length; i+=BlockSize) |
| { |
| Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i; |
| Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize); |
| Index bs = end-k; |
| Index start = k + m_shift; |
| |
| typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType; |
| SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, |
| Side==OnTheRight ? start : k, |
| Side==OnTheRight ? bs : m_vectors.rows()-start, |
| Side==OnTheRight ? m_vectors.cols()-start : bs); |
| typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1); |
| Block<Dest,Dynamic,Dynamic> sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols()); |
| apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans); |
| } |
| } |
| else |
| { |
| workspace.resize(dst.cols()); |
| for(Index k = 0; k < m_length; ++k) |
| { |
| Index actual_k = m_trans ? k : m_length-k-1; |
| dst.bottomRows(rows()-m_shift-actual_k) |
| .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
| } |
| } |
| } |
| |
| /** \brief Computes the product of a Householder sequence with a matrix. |
| * \param[in] other %Matrix being multiplied. |
| * \returns Expression object representing the product. |
| * |
| * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this |
| * and \f$ M \f$ is the matrix \p other. |
| */ |
| template<typename OtherDerived> |
| typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const |
| { |
| typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type |
| res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>()); |
| applyThisOnTheLeft(res); |
| return res; |
| } |
| |
| template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl; |
| |
| /** \brief Sets the length of the Householder sequence. |
| * \param [in] length New value for the length. |
| * |
| * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set |
| * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that |
| * is smaller. After this function is called, the length equals \p length. |
| * |
| * \sa length() |
| */ |
| HouseholderSequence& setLength(Index length) |
| { |
| m_length = length; |
| return *this; |
| } |
| |
| /** \brief Sets the shift of the Householder sequence. |
| * \param [in] shift New value for the shift. |
| * |
| * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th |
| * column of the matrix \p v passed to the constructor corresponds to the i-th Householder |
| * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} |
| * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th |
| * Householder reflection. |
| * |
| * \sa shift() |
| */ |
| HouseholderSequence& setShift(Index shift) |
| { |
| m_shift = shift; |
| return *this; |
| } |
| |
| Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ |
| Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ |
| |
| /* Necessary for .adjoint() and .conjugate() */ |
| template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence; |
| |
| protected: |
| |
| /** \brief Sets the transpose flag. |
| * \param [in] trans New value of the transpose flag. |
| * |
| * By default, the transpose flag is not set. If the transpose flag is set, then this object represents |
| * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. |
| * |
| * \sa trans() |
| */ |
| HouseholderSequence& setTrans(bool trans) |
| { |
| m_trans = trans; |
| return *this; |
| } |
| |
| bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */ |
| |
| typename VectorsType::Nested m_vectors; |
| typename CoeffsType::Nested m_coeffs; |
| bool m_trans; |
| Index m_length; |
| Index m_shift; |
| }; |
| |
| /** \brief Computes the product of a matrix with a Householder sequence. |
| * \param[in] other %Matrix being multiplied. |
| * \param[in] h %HouseholderSequence being multiplied. |
| * \returns Expression object representing the product. |
| * |
| * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the |
| * Householder sequence represented by \p h. |
| */ |
| template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> |
| typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h) |
| { |
| typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type |
| res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>()); |
| h.applyThisOnTheRight(res); |
| return res; |
| } |
| |
| /** \ingroup Householder_Module \householder_module |
| * \brief Convenience function for constructing a Householder sequence. |
| * \returns A HouseholderSequence constructed from the specified arguments. |
| */ |
| template<typename VectorsType, typename CoeffsType> |
| HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) |
| { |
| return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h); |
| } |
| |
| /** \ingroup Householder_Module \householder_module |
| * \brief Convenience function for constructing a Householder sequence. |
| * \returns A HouseholderSequence constructed from the specified arguments. |
| * \details This function differs from householderSequence() in that the template argument \p OnTheSide of |
| * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. |
| */ |
| template<typename VectorsType, typename CoeffsType> |
| HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) |
| { |
| return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H |