blob: 2580151de7fcf11fdacb246e7783abfa2f8ebf2d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SIMPLICIAL_CHOLESKY_H
#define EIGEN_SIMPLICIAL_CHOLESKY_H
namespace Eigen {
enum SimplicialCholeskyMode {
SimplicialCholeskyLLT,
SimplicialCholeskyLDLT
};
namespace internal {
template<typename CholMatrixType, typename InputMatrixType>
struct simplicial_cholesky_grab_input {
typedef CholMatrixType const * ConstCholMatrixPtr;
static void run(const InputMatrixType& input, ConstCholMatrixPtr &pmat, CholMatrixType &tmp)
{
tmp = input;
pmat = &tmp;
}
};
template<typename MatrixType>
struct simplicial_cholesky_grab_input<MatrixType,MatrixType> {
typedef MatrixType const * ConstMatrixPtr;
static void run(const MatrixType& input, ConstMatrixPtr &pmat, MatrixType &/*tmp*/)
{
pmat = &input;
}
};
} // end namespace internal
/** \ingroup SparseCholesky_Module
* \brief A direct sparse Cholesky factorizations
*
* These classes provide LL^T and LDL^T Cholesky factorizations of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* X and B can be either dense or sparse.
*
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
* such that the factorized matrix is P A P^-1.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
*/
template<typename Derived>
class SimplicialCholeskyBase : public SparseSolverBase<Derived>
{
typedef SparseSolverBase<Derived> Base;
using Base::m_isInitialized;
public:
typedef typename internal::traits<Derived>::MatrixType MatrixType;
typedef typename internal::traits<Derived>::OrderingType OrderingType;
enum { UpLo = internal::traits<Derived>::UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType;
typedef CholMatrixType const * ConstCholMatrixPtr;
typedef Matrix<Scalar,Dynamic,1> VectorType;
public:
using Base::derived;
/** Default constructor */
SimplicialCholeskyBase()
: m_info(Success), m_shiftOffset(0), m_shiftScale(1)
{}
explicit SimplicialCholeskyBase(const MatrixType& matrix)
: m_info(Success), m_shiftOffset(0), m_shiftScale(1)
{
derived().compute(matrix);
}
~SimplicialCholeskyBase()
{
}
Derived& derived() { return *static_cast<Derived*>(this); }
const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Index cols() const { return m_matrix.cols(); }
inline Index rows() const { return m_matrix.rows(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** \returns the permutation P
* \sa permutationPinv() */
const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationP() const
{ return m_P; }
/** \returns the inverse P^-1 of the permutation P
* \sa permutationP() */
const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& permutationPinv() const
{ return m_Pinv; }
/** Sets the shift parameters that will be used to adjust the diagonal coefficients during the numerical factorization.
*
* During the numerical factorization, the diagonal coefficients are transformed by the following linear model:\n
* \c d_ii = \a offset + \a scale * \c d_ii
*
* The default is the identity transformation with \a offset=0, and \a scale=1.
*
* \returns a reference to \c *this.
*/
Derived& setShift(const RealScalar& offset, const RealScalar& scale = 1)
{
m_shiftOffset = offset;
m_shiftScale = scale;
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Stream>
void dumpMemory(Stream& s)
{
int total = 0;
s << " L: " << ((total+=(m_matrix.cols()+1) * sizeof(int) + m_matrix.nonZeros()*(sizeof(int)+sizeof(Scalar))) >> 20) << "Mb" << "\n";
s << " diag: " << ((total+=m_diag.size() * sizeof(Scalar)) >> 20) << "Mb" << "\n";
s << " tree: " << ((total+=m_parent.size() * sizeof(int)) >> 20) << "Mb" << "\n";
s << " nonzeros: " << ((total+=m_nonZerosPerCol.size() * sizeof(int)) >> 20) << "Mb" << "\n";
s << " perm: " << ((total+=m_P.size() * sizeof(int)) >> 20) << "Mb" << "\n";
s << " perm^-1: " << ((total+=m_Pinv.size() * sizeof(int)) >> 20) << "Mb" << "\n";
s << " TOTAL: " << (total>> 20) << "Mb" << "\n";
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(m_matrix.rows()==b.rows());
if(m_info!=Success)
return;
if(m_P.size()>0)
dest = m_P * b;
else
dest = b;
if(m_matrix.nonZeros()>0) // otherwise L==I
derived().matrixL().solveInPlace(dest);
if(m_diag.size()>0)
dest = m_diag.asDiagonal().inverse() * dest;
if (m_matrix.nonZeros()>0) // otherwise U==I
derived().matrixU().solveInPlace(dest);
if(m_P.size()>0)
dest = m_Pinv * dest;
}
template<typename Rhs,typename Dest>
void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
{
internal::solve_sparse_through_dense_panels(derived(), b, dest);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
protected:
/** Computes the sparse Cholesky decomposition of \a matrix */
template<bool DoLDLT>
void compute(const MatrixType& matrix)
{
eigen_assert(matrix.rows()==matrix.cols());
Index size = matrix.cols();
CholMatrixType tmp(size,size);
ConstCholMatrixPtr pmat;
ordering(matrix, pmat, tmp);
analyzePattern_preordered(*pmat, DoLDLT);
factorize_preordered<DoLDLT>(*pmat);
}
template<bool DoLDLT>
void factorize(const MatrixType& a)
{
eigen_assert(a.rows()==a.cols());
int size = a.cols();
CholMatrixType tmp(size,size);
ConstCholMatrixPtr pmat;
if(m_P.size()==0 && (UpLo&Upper)==Upper)
{
// If there is no ordering, try to directly use the input matrix without any copy
internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, tmp);
}
else
{
tmp.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
pmat = &tmp;
}
factorize_preordered<DoLDLT>(*pmat);
}
template<bool DoLDLT>
void factorize_preordered(const CholMatrixType& a);
void analyzePattern(const MatrixType& a, bool doLDLT)
{
eigen_assert(a.rows()==a.cols());
int size = a.cols();
CholMatrixType tmp(size,size);
ConstCholMatrixPtr pmat;
ordering(a, pmat, tmp);
analyzePattern_preordered(*pmat,doLDLT);
}
void analyzePattern_preordered(const CholMatrixType& a, bool doLDLT);
void ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap);
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
{
return row!=col;
}
};
mutable ComputationInfo m_info;
bool m_factorizationIsOk;
bool m_analysisIsOk;
CholMatrixType m_matrix;
VectorType m_diag; // the diagonal coefficients (LDLT mode)
VectorXi m_parent; // elimination tree
VectorXi m_nonZerosPerCol;
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // the permutation
PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // the inverse permutation
RealScalar m_shiftOffset;
RealScalar m_shiftScale;
};
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLLT;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialLDLT;
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::StorageIndex> > class SimplicialCholesky;
namespace internal {
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
typedef TriangularView<const CholMatrixType, Eigen::Lower> MatrixL;
typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
};
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar, ColMajor, StorageIndex> CholMatrixType;
typedef TriangularView<const CholMatrixType, Eigen::UnitLower> MatrixL;
typedef TriangularView<const typename CholMatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
};
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
{
typedef _MatrixType MatrixType;
typedef _Ordering OrderingType;
enum { UpLo = _UpLo };
};
}
/** \ingroup SparseCholesky_Module
* \class SimplicialLLT
* \brief A direct sparse LLT Cholesky factorizations
*
* This class provides a LL^T Cholesky factorizations of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* X and B can be either dense or sparse.
*
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
* such that the factorized matrix is P A P^-1.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
*/
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef SimplicialCholeskyBase<SimplicialLLT> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar,ColMajor,Index> CholMatrixType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef internal::traits<SimplicialLLT> Traits;
typedef typename Traits::MatrixL MatrixL;
typedef typename Traits::MatrixU MatrixU;
public:
/** Default constructor */
SimplicialLLT() : Base() {}
/** Constructs and performs the LLT factorization of \a matrix */
explicit SimplicialLLT(const MatrixType& matrix)
: Base(matrix) {}
/** \returns an expression of the factor L */
inline const MatrixL matrixL() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
return Traits::getL(Base::m_matrix);
}
/** \returns an expression of the factor U (= L^*) */
inline const MatrixU matrixU() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LLT not factorized");
return Traits::getU(Base::m_matrix);
}
/** Computes the sparse Cholesky decomposition of \a matrix */
SimplicialLLT& compute(const MatrixType& matrix)
{
Base::template compute<false>(matrix);
return *this;
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a)
{
Base::analyzePattern(a, false);
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a)
{
Base::template factorize<false>(a);
}
/** \returns the determinant of the underlying matrix from the current factorization */
Scalar determinant() const
{
Scalar detL = Base::m_matrix.diagonal().prod();
return numext::abs2(detL);
}
};
/** \ingroup SparseCholesky_Module
* \class SimplicialLDLT
* \brief A direct sparse LDLT Cholesky factorizations without square root.
*
* This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are
* selfadjoint and positive definite. The factorization allows for solving A.X = B where
* X and B can be either dense or sparse.
*
* In order to reduce the fill-in, a symmetric permutation P is applied prior to the factorization
* such that the factorized matrix is P A P^-1.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
*
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
*/
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef SimplicialCholeskyBase<SimplicialLDLT> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef internal::traits<SimplicialLDLT> Traits;
typedef typename Traits::MatrixL MatrixL;
typedef typename Traits::MatrixU MatrixU;
public:
/** Default constructor */
SimplicialLDLT() : Base() {}
/** Constructs and performs the LLT factorization of \a matrix */
explicit SimplicialLDLT(const MatrixType& matrix)
: Base(matrix) {}
/** \returns a vector expression of the diagonal D */
inline const VectorType vectorD() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
return Base::m_diag;
}
/** \returns an expression of the factor L */
inline const MatrixL matrixL() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
return Traits::getL(Base::m_matrix);
}
/** \returns an expression of the factor U (= L^*) */
inline const MatrixU matrixU() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial LDLT not factorized");
return Traits::getU(Base::m_matrix);
}
/** Computes the sparse Cholesky decomposition of \a matrix */
SimplicialLDLT& compute(const MatrixType& matrix)
{
Base::template compute<true>(matrix);
return *this;
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a)
{
Base::analyzePattern(a, true);
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a)
{
Base::template factorize<true>(a);
}
/** \returns the determinant of the underlying matrix from the current factorization */
Scalar determinant() const
{
return Base::m_diag.prod();
}
};
/** \deprecated use SimplicialLDLT or class SimplicialLLT
* \ingroup SparseCholesky_Module
* \class SimplicialCholesky
*
* \sa class SimplicialLDLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename _Ordering>
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
{
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef SimplicialCholeskyBase<SimplicialCholesky> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> CholMatrixType;
typedef Matrix<Scalar,Dynamic,1> VectorType;
typedef internal::traits<SimplicialCholesky> Traits;
typedef internal::traits<SimplicialLDLT<MatrixType,UpLo> > LDLTTraits;
typedef internal::traits<SimplicialLLT<MatrixType,UpLo> > LLTTraits;
public:
SimplicialCholesky() : Base(), m_LDLT(true) {}
explicit SimplicialCholesky(const MatrixType& matrix)
: Base(), m_LDLT(true)
{
compute(matrix);
}
SimplicialCholesky& setMode(SimplicialCholeskyMode mode)
{
switch(mode)
{
case SimplicialCholeskyLLT:
m_LDLT = false;
break;
case SimplicialCholeskyLDLT:
m_LDLT = true;
break;
default:
break;
}
return *this;
}
inline const VectorType vectorD() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
return Base::m_diag;
}
inline const CholMatrixType rawMatrix() const {
eigen_assert(Base::m_factorizationIsOk && "Simplicial Cholesky not factorized");
return Base::m_matrix;
}
/** Computes the sparse Cholesky decomposition of \a matrix */
SimplicialCholesky& compute(const MatrixType& matrix)
{
if(m_LDLT)
Base::template compute<true>(matrix);
else
Base::template compute<false>(matrix);
return *this;
}
/** Performs a symbolic decomposition on the sparcity of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& a)
{
Base::analyzePattern(a, m_LDLT);
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& a)
{
if(m_LDLT)
Base::template factorize<true>(a);
else
Base::template factorize<false>(a);
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(Base::m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
eigen_assert(Base::m_matrix.rows()==b.rows());
if(Base::m_info!=Success)
return;
if(Base::m_P.size()>0)
dest = Base::m_P * b;
else
dest = b;
if(Base::m_matrix.nonZeros()>0) // otherwise L==I
{
if(m_LDLT)
LDLTTraits::getL(Base::m_matrix).solveInPlace(dest);
else
LLTTraits::getL(Base::m_matrix).solveInPlace(dest);
}
if(Base::m_diag.size()>0)
dest = Base::m_diag.asDiagonal().inverse() * dest;
if (Base::m_matrix.nonZeros()>0) // otherwise I==I
{
if(m_LDLT)
LDLTTraits::getU(Base::m_matrix).solveInPlace(dest);
else
LLTTraits::getU(Base::m_matrix).solveInPlace(dest);
}
if(Base::m_P.size()>0)
dest = Base::m_Pinv * dest;
}
/** \internal */
template<typename Rhs,typename Dest>
void _solve_impl(const SparseMatrixBase<Rhs> &b, SparseMatrixBase<Dest> &dest) const
{
internal::solve_sparse_through_dense_panels(*this, b, dest);
}
Scalar determinant() const
{
if(m_LDLT)
{
return Base::m_diag.prod();
}
else
{
Scalar detL = Diagonal<const CholMatrixType>(Base::m_matrix).prod();
return numext::abs2(detL);
}
}
protected:
bool m_LDLT;
};
template<typename Derived>
void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, ConstCholMatrixPtr &pmat, CholMatrixType& ap)
{
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
pmat = &ap;
// Note that ordering methods compute the inverse permutation
if(!internal::is_same<OrderingType,NaturalOrdering<Index> >::value)
{
{
CholMatrixType C;
C = a.template selfadjointView<UpLo>();
OrderingType ordering;
ordering(C,m_Pinv);
}
if(m_Pinv.size()>0) m_P = m_Pinv.inverse();
else m_P.resize(0);
ap.resize(size,size);
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>().twistedBy(m_P);
}
else
{
m_Pinv.resize(0);
m_P.resize(0);
if(UpLo==Lower || MatrixType::IsRowMajor)
{
// we have to transpose the lower part to to the upper one
ap.resize(size,size);
ap.template selfadjointView<Upper>() = a.template selfadjointView<UpLo>();
}
else
internal::simplicial_cholesky_grab_input<CholMatrixType,MatrixType>::run(a, pmat, ap);
}
}
} // end namespace Eigen
#endif // EIGEN_SIMPLICIAL_CHOLESKY_H