| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPLINE_FITTING_H |
| #define EIGEN_SPLINE_FITTING_H |
| |
| #include <algorithm> |
| #include <functional> |
| #include <numeric> |
| #include <vector> |
| |
| #include "SplineFwd.h" |
| |
| #include <Eigen/LU> |
| #include <Eigen/QR> |
| |
| namespace Eigen |
| { |
| /** |
| * \brief Computes knot averages. |
| * \ingroup Splines_Module |
| * |
| * The knots are computed as |
| * \f{align*} |
| * u_0 & = \hdots = u_p = 0 \\ |
| * u_{m-p} & = \hdots = u_{m} = 1 \\ |
| * u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p |
| * \f} |
| * where \f$p\f$ is the degree and \f$m+1\f$ the number knots |
| * of the desired interpolating spline. |
| * |
| * \param[in] parameters The input parameters. During interpolation one for each data point. |
| * \param[in] degree The spline degree which is used during the interpolation. |
| * \param[out] knots The output knot vector. |
| * |
| * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data |
| **/ |
| template <typename KnotVectorType> |
| void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots) |
| { |
| knots.resize(parameters.size()+degree+1); |
| |
| for (DenseIndex j=1; j<parameters.size()-degree; ++j) |
| knots(j+degree) = parameters.segment(j,degree).mean(); |
| |
| knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1); |
| knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1); |
| } |
| |
| /** |
| * \brief Computes knot averages when derivative constraints are present. |
| * Note that this is a technical interpretation of the referenced article |
| * since the algorithm contained therein is incorrect as written. |
| * \ingroup Splines_Module |
| * |
| * \param[in] parameters The parameters at which the interpolation B-Spline |
| * will intersect the given interpolation points. The parameters |
| * are assumed to be a non-decreasing sequence. |
| * \param[in] degree The degree of the interpolating B-Spline. This must be |
| * greater than zero. |
| * \param[in] derivativeIndices The indices corresponding to parameters at |
| * which there are derivative constraints. The indices are assumed |
| * to be a non-decreasing sequence. |
| * \param[out] knots The calculated knot vector. These will be returned as a |
| * non-decreasing sequence |
| * |
| * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. |
| * Curve interpolation with directional constraints for engineering design. |
| * Engineering with Computers |
| **/ |
| template <typename KnotVectorType, typename ParameterVectorType, typename IndexArray> |
| void KnotAveragingWithDerivatives(const ParameterVectorType& parameters, |
| const unsigned int degree, |
| const IndexArray& derivativeIndices, |
| KnotVectorType& knots) |
| { |
| typedef typename ParameterVectorType::Scalar Scalar; |
| |
| DenseIndex numParameters = parameters.size(); |
| DenseIndex numDerivatives = derivativeIndices.size(); |
| |
| if (numDerivatives < 1) |
| { |
| KnotAveraging(parameters, degree, knots); |
| return; |
| } |
| |
| DenseIndex startIndex; |
| DenseIndex endIndex; |
| |
| DenseIndex numInternalDerivatives = numDerivatives; |
| |
| if (derivativeIndices[0] == 0) |
| { |
| startIndex = 0; |
| --numInternalDerivatives; |
| } |
| else |
| { |
| startIndex = 1; |
| } |
| if (derivativeIndices[numDerivatives - 1] == numParameters - 1) |
| { |
| endIndex = numParameters - degree; |
| --numInternalDerivatives; |
| } |
| else |
| { |
| endIndex = numParameters - degree - 1; |
| } |
| |
| // There are (endIndex - startIndex + 1) knots obtained from the averaging |
| // and 2 for the first and last parameters. |
| DenseIndex numAverageKnots = endIndex - startIndex + 3; |
| KnotVectorType averageKnots(numAverageKnots); |
| averageKnots[0] = parameters[0]; |
| |
| int newKnotIndex = 0; |
| for (DenseIndex i = startIndex; i <= endIndex; ++i) |
| averageKnots[++newKnotIndex] = parameters.segment(i, degree).mean(); |
| averageKnots[++newKnotIndex] = parameters[numParameters - 1]; |
| |
| newKnotIndex = -1; |
| |
| ParameterVectorType temporaryParameters(numParameters + 1); |
| KnotVectorType derivativeKnots(numInternalDerivatives); |
| for (unsigned int i = 0; i < numAverageKnots - 1; ++i) |
| { |
| temporaryParameters[0] = averageKnots[i]; |
| ParameterVectorType parameterIndices(numParameters); |
| int temporaryParameterIndex = 1; |
| for (int j = 0; j < numParameters; ++j) |
| { |
| Scalar parameter = parameters[j]; |
| if (parameter >= averageKnots[i] && parameter < averageKnots[i + 1]) |
| { |
| parameterIndices[temporaryParameterIndex] = j; |
| temporaryParameters[temporaryParameterIndex++] = parameter; |
| } |
| } |
| temporaryParameters[temporaryParameterIndex] = averageKnots[i + 1]; |
| |
| for (int j = 0; j <= temporaryParameterIndex - 2; ++j) |
| { |
| for (DenseIndex k = 0; k < derivativeIndices.size(); ++k) |
| { |
| if (parameterIndices[j + 1] == derivativeIndices[k] |
| && parameterIndices[j + 1] != 0 |
| && parameterIndices[j + 1] != numParameters - 1) |
| { |
| derivativeKnots[++newKnotIndex] = temporaryParameters.segment(j, 3).mean(); |
| break; |
| } |
| } |
| } |
| } |
| |
| KnotVectorType temporaryKnots(averageKnots.size() + derivativeKnots.size()); |
| |
| std::merge(averageKnots.data(), averageKnots.data() + averageKnots.size(), |
| derivativeKnots.data(), derivativeKnots.data() + derivativeKnots.size(), |
| temporaryKnots.data()); |
| |
| // Number of control points (one for each point and derivative) plus spline order. |
| DenseIndex numKnots = numParameters + numDerivatives + degree + 1; |
| knots.resize(numKnots); |
| |
| knots.head(degree).fill(temporaryKnots[0]); |
| knots.tail(degree).fill(temporaryKnots.template tail<1>()[0]); |
| knots.segment(degree, temporaryKnots.size()) = temporaryKnots; |
| } |
| |
| /** |
| * \brief Computes chord length parameters which are required for spline interpolation. |
| * \ingroup Splines_Module |
| * |
| * \param[in] pts The data points to which a spline should be fit. |
| * \param[out] chord_lengths The resulting chord lenggth vector. |
| * |
| * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data |
| **/ |
| template <typename PointArrayType, typename KnotVectorType> |
| void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths) |
| { |
| typedef typename KnotVectorType::Scalar Scalar; |
| |
| const DenseIndex n = pts.cols(); |
| |
| // 1. compute the column-wise norms |
| chord_lengths.resize(pts.cols()); |
| chord_lengths[0] = 0; |
| chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm(); |
| |
| // 2. compute the partial sums |
| std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data()); |
| |
| // 3. normalize the data |
| chord_lengths /= chord_lengths(n-1); |
| chord_lengths(n-1) = Scalar(1); |
| } |
| |
| /** |
| * \brief Spline fitting methods. |
| * \ingroup Splines_Module |
| **/ |
| template <typename SplineType> |
| struct SplineFitting |
| { |
| typedef typename SplineType::KnotVectorType KnotVectorType; |
| typedef typename SplineType::ParameterVectorType ParameterVectorType; |
| |
| /** |
| * \brief Fits an interpolating Spline to the given data points. |
| * |
| * \param pts The points for which an interpolating spline will be computed. |
| * \param degree The degree of the interpolating spline. |
| * |
| * \returns A spline interpolating the initially provided points. |
| **/ |
| template <typename PointArrayType> |
| static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree); |
| |
| /** |
| * \brief Fits an interpolating Spline to the given data points. |
| * |
| * \param pts The points for which an interpolating spline will be computed. |
| * \param degree The degree of the interpolating spline. |
| * \param knot_parameters The knot parameters for the interpolation. |
| * |
| * \returns A spline interpolating the initially provided points. |
| **/ |
| template <typename PointArrayType> |
| static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters); |
| |
| /** |
| * \brief Fits an interpolating spline to the given data points and |
| * derivatives. |
| * |
| * \param points The points for which an interpolating spline will be computed. |
| * \param derivatives The desired derivatives of the interpolating spline at interpolation |
| * points. |
| * \param derivativeIndices An array indicating which point each derivative belongs to. This |
| * must be the same size as @a derivatives. |
| * \param degree The degree of the interpolating spline. |
| * |
| * \returns A spline interpolating @a points with @a derivatives at those points. |
| * |
| * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. |
| * Curve interpolation with directional constraints for engineering design. |
| * Engineering with Computers |
| **/ |
| template <typename PointArrayType, typename IndexArray> |
| static SplineType InterpolateWithDerivatives(const PointArrayType& points, |
| const PointArrayType& derivatives, |
| const IndexArray& derivativeIndices, |
| const unsigned int degree); |
| |
| /** |
| * \brief Fits an interpolating spline to the given data points and derivatives. |
| * |
| * \param points The points for which an interpolating spline will be computed. |
| * \param derivatives The desired derivatives of the interpolating spline at interpolation points. |
| * \param derivativeIndices An array indicating which point each derivative belongs to. This |
| * must be the same size as @a derivatives. |
| * \param degree The degree of the interpolating spline. |
| * \param parameters The parameters corresponding to the interpolation points. |
| * |
| * \returns A spline interpolating @a points with @a derivatives at those points. |
| * |
| * \sa Les A. Piegl, Khairan Rajab, Volha Smarodzinana. 2008. |
| * Curve interpolation with directional constraints for engineering design. |
| * Engineering with Computers |
| */ |
| template <typename PointArrayType, typename IndexArray> |
| static SplineType InterpolateWithDerivatives(const PointArrayType& points, |
| const PointArrayType& derivatives, |
| const IndexArray& derivativeIndices, |
| const unsigned int degree, |
| const ParameterVectorType& parameters); |
| }; |
| |
| template <typename SplineType> |
| template <typename PointArrayType> |
| SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters) |
| { |
| typedef typename SplineType::KnotVectorType::Scalar Scalar; |
| typedef typename SplineType::ControlPointVectorType ControlPointVectorType; |
| |
| typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; |
| |
| KnotVectorType knots; |
| KnotAveraging(knot_parameters, degree, knots); |
| |
| DenseIndex n = pts.cols(); |
| MatrixType A = MatrixType::Zero(n,n); |
| for (DenseIndex i=1; i<n-1; ++i) |
| { |
| const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots); |
| |
| // The segment call should somehow be told the spline order at compile time. |
| A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots); |
| } |
| A(0,0) = 1.0; |
| A(n-1,n-1) = 1.0; |
| |
| HouseholderQR<MatrixType> qr(A); |
| |
| // Here, we are creating a temporary due to an Eigen issue. |
| ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose(); |
| |
| return SplineType(knots, ctrls); |
| } |
| |
| template <typename SplineType> |
| template <typename PointArrayType> |
| SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree) |
| { |
| KnotVectorType chord_lengths; // knot parameters |
| ChordLengths(pts, chord_lengths); |
| return Interpolate(pts, degree, chord_lengths); |
| } |
| |
| template <typename SplineType> |
| template <typename PointArrayType, typename IndexArray> |
| SplineType |
| SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points, |
| const PointArrayType& derivatives, |
| const IndexArray& derivativeIndices, |
| const unsigned int degree, |
| const ParameterVectorType& parameters) |
| { |
| typedef typename SplineType::KnotVectorType::Scalar Scalar; |
| typedef typename SplineType::ControlPointVectorType ControlPointVectorType; |
| |
| typedef Matrix<Scalar, Dynamic, Dynamic> MatrixType; |
| |
| const DenseIndex n = points.cols() + derivatives.cols(); |
| |
| KnotVectorType knots; |
| |
| KnotAveragingWithDerivatives(parameters, degree, derivativeIndices, knots); |
| |
| // fill matrix |
| MatrixType A = MatrixType::Zero(n, n); |
| |
| // Use these dimensions for quicker populating, then transpose for solving. |
| MatrixType b(points.rows(), n); |
| |
| DenseIndex startRow; |
| DenseIndex derivativeStart; |
| |
| // End derivatives. |
| if (derivativeIndices[0] == 0) |
| { |
| A.template block<1, 2>(1, 0) << -1, 1; |
| |
| Scalar y = (knots(degree + 1) - knots(0)) / degree; |
| b.col(1) = y*derivatives.col(0); |
| |
| startRow = 2; |
| derivativeStart = 1; |
| } |
| else |
| { |
| startRow = 1; |
| derivativeStart = 0; |
| } |
| if (derivativeIndices[derivatives.cols() - 1] == points.cols() - 1) |
| { |
| A.template block<1, 2>(n - 2, n - 2) << -1, 1; |
| |
| Scalar y = (knots(knots.size() - 1) - knots(knots.size() - (degree + 2))) / degree; |
| b.col(b.cols() - 2) = y*derivatives.col(derivatives.cols() - 1); |
| } |
| |
| DenseIndex row = startRow; |
| DenseIndex derivativeIndex = derivativeStart; |
| for (DenseIndex i = 1; i < parameters.size() - 1; ++i) |
| { |
| const DenseIndex span = SplineType::Span(parameters[i], degree, knots); |
| |
| if (derivativeIndices[derivativeIndex] == i) |
| { |
| A.block(row, span - degree, 2, degree + 1) |
| = SplineType::BasisFunctionDerivatives(parameters[i], 1, degree, knots); |
| |
| b.col(row++) = points.col(i); |
| b.col(row++) = derivatives.col(derivativeIndex++); |
| } |
| else |
| { |
| A.row(row++).segment(span - degree, degree + 1) |
| = SplineType::BasisFunctions(parameters[i], degree, knots); |
| } |
| } |
| b.col(0) = points.col(0); |
| b.col(b.cols() - 1) = points.col(points.cols() - 1); |
| A(0,0) = 1; |
| A(n - 1, n - 1) = 1; |
| |
| // Solve |
| FullPivLU<MatrixType> lu(A); |
| ControlPointVectorType controlPoints = lu.solve(MatrixType(b.transpose())).transpose(); |
| |
| SplineType spline(knots, controlPoints); |
| |
| return spline; |
| } |
| |
| template <typename SplineType> |
| template <typename PointArrayType, typename IndexArray> |
| SplineType |
| SplineFitting<SplineType>::InterpolateWithDerivatives(const PointArrayType& points, |
| const PointArrayType& derivatives, |
| const IndexArray& derivativeIndices, |
| const unsigned int degree) |
| { |
| ParameterVectorType parameters; |
| ChordLengths(points, parameters); |
| return InterpolateWithDerivatives(points, derivatives, derivativeIndices, degree, parameters); |
| } |
| } |
| |
| #endif // EIGEN_SPLINE_FITTING_H |