blob: 7e3c881aec9891435d82b082bce449a96bbb9944 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLMODSUPPORT_H
#define EIGEN_CHOLMODSUPPORT_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename Scalar>
struct cholmod_configure_matrix;
template <>
struct cholmod_configure_matrix<double> {
template <typename CholmodType>
static void run(CholmodType& mat) {
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
};
template <>
struct cholmod_configure_matrix<std::complex<double> > {
template <typename CholmodType>
static void run(CholmodType& mat) {
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
};
// Other scalar types are not yet supported by Cholmod
// template<> struct cholmod_configure_matrix<float> {
// template<typename CholmodType>
// static void run(CholmodType& mat) {
// mat.xtype = CHOLMOD_REAL;
// mat.dtype = CHOLMOD_SINGLE;
// }
// };
//
// template<> struct cholmod_configure_matrix<std::complex<float> > {
// template<typename CholmodType>
// static void run(CholmodType& mat) {
// mat.xtype = CHOLMOD_COMPLEX;
// mat.dtype = CHOLMOD_SINGLE;
// }
// };
} // namespace internal
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template <typename Scalar_, int Options_, typename StorageIndex_>
cholmod_sparse viewAsCholmod(Ref<SparseMatrix<Scalar_, Options_, StorageIndex_> > mat) {
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();
res.ncol = mat.cols();
res.p = mat.outerIndexPtr();
res.i = mat.innerIndexPtr();
res.x = mat.valuePtr();
res.z = 0;
res.sorted = 1;
if (mat.isCompressed()) {
res.packed = 1;
res.nz = 0;
} else {
res.packed = 0;
res.nz = mat.innerNonZeroPtr();
}
res.dtype = 0;
res.stype = -1;
if (internal::is_same<StorageIndex_, int>::value) {
res.itype = CHOLMOD_INT;
} else if (internal::is_same<StorageIndex_, SuiteSparse_long>::value) {
res.itype = CHOLMOD_LONG;
} else {
eigen_assert(false && "Index type not supported yet");
}
// setup res.xtype
internal::cholmod_configure_matrix<Scalar_>::run(res);
res.stype = 0;
return res;
}
template <typename Scalar_, int Options_, typename Index_>
const cholmod_sparse viewAsCholmod(const SparseMatrix<Scalar_, Options_, Index_>& mat) {
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_, Options_, Index_> >(mat.const_cast_derived()));
return res;
}
template <typename Scalar_, int Options_, typename Index_>
const cholmod_sparse viewAsCholmod(const SparseVector<Scalar_, Options_, Index_>& mat) {
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_, Options_, Index_> >(mat.const_cast_derived()));
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template <typename Scalar_, int Options_, typename Index_, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<Scalar_, Options_, Index_>, UpLo>& mat) {
cholmod_sparse res = viewAsCholmod(Ref<SparseMatrix<Scalar_, Options_, Index_> >(mat.matrix().const_cast_derived()));
if (UpLo == Upper) res.stype = 1;
if (UpLo == Lower) res.stype = -1;
// swap stype for rowmajor matrices (only works for real matrices)
EIGEN_STATIC_ASSERT((Options_ & RowMajorBit) == 0 || NumTraits<Scalar_>::IsComplex == 0,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
if (Options_ & RowMajorBit) res.stype *= -1;
return res;
}
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
* The data are not copied but shared. */
template <typename Derived>
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat) {
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags & RowMajorBit) == 0,
THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.nzmax = res.nrow * res.ncol;
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
res.x = (void*)(mat.derived().data());
res.z = 0;
internal::cholmod_configure_matrix<Scalar>::run(res);
return res;
}
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template <typename Scalar, typename StorageIndex>
Map<const SparseMatrix<Scalar, ColMajor, StorageIndex> > viewAsEigen(cholmod_sparse& cm) {
return Map<const SparseMatrix<Scalar, ColMajor, StorageIndex> >(
cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol], static_cast<StorageIndex*>(cm.p),
static_cast<StorageIndex*>(cm.i), static_cast<Scalar*>(cm.x));
}
/** Returns a view of the Cholmod sparse matrix factor \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template <typename Scalar, typename StorageIndex>
Map<const SparseMatrix<Scalar, ColMajor, StorageIndex> > viewAsEigen(cholmod_factor& cm) {
return Map<const SparseMatrix<Scalar, ColMajor, StorageIndex> >(
cm.n, cm.n, static_cast<StorageIndex*>(cm.p)[cm.n], static_cast<StorageIndex*>(cm.p),
static_cast<StorageIndex*>(cm.i), static_cast<Scalar*>(cm.x));
}
namespace internal {
// template specializations for int and long that call the correct cholmod method
#define EIGEN_CHOLMOD_SPECIALIZE0(ret, name) \
template <typename StorageIndex_> \
inline ret cm_##name(cholmod_common& Common) { \
return cholmod_##name(&Common); \
} \
template <> \
inline ret cm_##name<SuiteSparse_long>(cholmod_common & Common) { \
return cholmod_l_##name(&Common); \
}
#define EIGEN_CHOLMOD_SPECIALIZE1(ret, name, t1, a1) \
template <typename StorageIndex_> \
inline ret cm_##name(t1& a1, cholmod_common& Common) { \
return cholmod_##name(&a1, &Common); \
} \
template <> \
inline ret cm_##name<SuiteSparse_long>(t1 & a1, cholmod_common & Common) { \
return cholmod_l_##name(&a1, &Common); \
}
EIGEN_CHOLMOD_SPECIALIZE0(int, start)
EIGEN_CHOLMOD_SPECIALIZE0(int, finish)
EIGEN_CHOLMOD_SPECIALIZE1(int, free_factor, cholmod_factor*, L)
EIGEN_CHOLMOD_SPECIALIZE1(int, free_dense, cholmod_dense*, X)
EIGEN_CHOLMOD_SPECIALIZE1(int, free_sparse, cholmod_sparse*, A)
EIGEN_CHOLMOD_SPECIALIZE1(cholmod_factor*, analyze, cholmod_sparse, A)
EIGEN_CHOLMOD_SPECIALIZE1(cholmod_sparse*, factor_to_sparse, cholmod_factor, L)
template <typename StorageIndex_>
inline cholmod_dense* cm_solve(int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common& Common) {
return cholmod_solve(sys, &L, &B, &Common);
}
template <>
inline cholmod_dense* cm_solve<SuiteSparse_long>(int sys, cholmod_factor& L, cholmod_dense& B, cholmod_common& Common) {
return cholmod_l_solve(sys, &L, &B, &Common);
}
template <typename StorageIndex_>
inline cholmod_sparse* cm_spsolve(int sys, cholmod_factor& L, cholmod_sparse& B, cholmod_common& Common) {
return cholmod_spsolve(sys, &L, &B, &Common);
}
template <>
inline cholmod_sparse* cm_spsolve<SuiteSparse_long>(int sys, cholmod_factor& L, cholmod_sparse& B,
cholmod_common& Common) {
return cholmod_l_spsolve(sys, &L, &B, &Common);
}
template <typename StorageIndex_>
inline int cm_factorize_p(cholmod_sparse* A, double beta[2], StorageIndex_* fset, std::size_t fsize, cholmod_factor* L,
cholmod_common& Common) {
return cholmod_factorize_p(A, beta, fset, fsize, L, &Common);
}
template <>
inline int cm_factorize_p<SuiteSparse_long>(cholmod_sparse* A, double beta[2], SuiteSparse_long* fset,
std::size_t fsize, cholmod_factor* L, cholmod_common& Common) {
return cholmod_l_factorize_p(A, beta, fset, fsize, L, &Common);
}
#undef EIGEN_CHOLMOD_SPECIALIZE0
#undef EIGEN_CHOLMOD_SPECIALIZE1
} // namespace internal
enum CholmodMode { CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt };
/** \ingroup CholmodSupport_Module
* \class CholmodBase
* \brief The base class for the direct Cholesky factorization of Cholmod
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template <typename MatrixType_, int UpLo_, typename Derived>
class CholmodBase : public SparseSolverBase<Derived> {
protected:
typedef SparseSolverBase<Derived> Base;
using Base::derived;
using Base::m_isInitialized;
public:
typedef MatrixType_ MatrixType;
enum { UpLo = UpLo_ };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
typedef typename MatrixType::StorageIndex StorageIndex;
enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
public:
CholmodBase() : m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) {
EIGEN_STATIC_ASSERT((internal::is_same<double, RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
internal::cm_start<StorageIndex>(m_cholmod);
}
explicit CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success), m_factorizationIsOk(false), m_analysisIsOk(false) {
EIGEN_STATIC_ASSERT((internal::is_same<double, RealScalar>::value), CHOLMOD_SUPPORTS_DOUBLE_PRECISION_ONLY);
m_shiftOffset[0] = m_shiftOffset[1] = 0.0;
internal::cm_start<StorageIndex>(m_cholmod);
compute(matrix);
}
~CholmodBase() {
if (m_cholmodFactor) internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
internal::cm_finish<StorageIndex>(m_cholmod);
}
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const {
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** Computes the sparse Cholesky decomposition of \a matrix */
Derived& compute(const MatrixType& matrix) {
analyzePattern(matrix);
factorize(matrix);
return derived();
}
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix) {
if (m_cholmodFactor) {
internal::cm_free_factor<StorageIndex>(m_cholmodFactor, m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
m_cholmodFactor = internal::cm_analyze<StorageIndex>(A, m_cholmod);
this->m_isInitialized = true;
this->m_info = Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been
* performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix) {
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
internal::cm_factorize_p<StorageIndex>(&A, m_shiftOffset, 0, 0, m_cholmodFactor, m_cholmod);
// If the factorization failed, either the input matrix was zero (so m_cholmodFactor == nullptr), or minor is the
// column at which it failed. On success minor == n.
this->m_info =
(m_cholmodFactor != nullptr && m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
m_factorizationIsOk = true;
}
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
* See the Cholmod user guide for details. */
cholmod_common& cholmod() { return m_cholmod; }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template <typename Rhs, typename Dest>
void _solve_impl(const MatrixBase<Rhs>& b, MatrixBase<Dest>& dest) const {
eigen_assert(m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or "
"symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size == b.rows());
// Cholmod needs column-major storage without inner-stride, which corresponds to the default behavior of Ref.
Ref<const Matrix<typename Rhs::Scalar, Dynamic, Dynamic, ColMajor> > b_ref(b.derived());
cholmod_dense b_cd = viewAsCholmod(b_ref);
cholmod_dense* x_cd = internal::cm_solve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cd, m_cholmod);
if (!x_cd) {
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
// NOTE Actually, the copy can be avoided by calling cholmod_solve2 instead of cholmod_solve
dest = Matrix<Scalar, Dest::RowsAtCompileTime, Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),
b.rows(), b.cols());
internal::cm_free_dense<StorageIndex>(x_cd, m_cholmod);
}
/** \internal */
template <typename RhsDerived, typename DestDerived>
void _solve_impl(const SparseMatrixBase<RhsDerived>& b, SparseMatrixBase<DestDerived>& dest) const {
eigen_assert(m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or "
"symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size == b.rows());
// note: cs stands for Cholmod Sparse
Ref<SparseMatrix<typename RhsDerived::Scalar, ColMajor, typename RhsDerived::StorageIndex> > b_ref(
b.const_cast_derived());
cholmod_sparse b_cs = viewAsCholmod(b_ref);
cholmod_sparse* x_cs = internal::cm_spsolve<StorageIndex>(CHOLMOD_A, *m_cholmodFactor, b_cs, m_cholmod);
if (!x_cs) {
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
// NOTE cholmod_spsolve in fact just calls the dense solver for blocks of 4 columns at a time (similar to Eigen's
// sparse solver)
dest.derived() = viewAsEigen<typename DestDerived::Scalar, typename DestDerived::StorageIndex>(*x_cs);
internal::cm_free_sparse<StorageIndex>(x_cs, m_cholmod);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
*
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
* \c d_ii = \a offset + \c d_ii
*
* The default is \a offset=0.
*
* \returns a reference to \c *this.
*/
Derived& setShift(const RealScalar& offset) {
m_shiftOffset[0] = double(offset);
return derived();
}
/** \returns the determinant of the underlying matrix from the current factorization */
Scalar determinant() const {
using std::exp;
return exp(logDeterminant());
}
/** \returns the log determinant of the underlying matrix from the current factorization */
Scalar logDeterminant() const {
using numext::real;
using std::log;
eigen_assert(m_factorizationIsOk &&
"The decomposition is not in a valid state for solving, you must first call either compute() or "
"symbolic()/numeric()");
RealScalar logDet = 0;
Scalar* x = static_cast<Scalar*>(m_cholmodFactor->x);
if (m_cholmodFactor->is_super) {
// Supernodal factorization stored as a packed list of dense column-major blocks,
// as described by the following structure:
// super[k] == index of the first column of the j-th super node
StorageIndex* super = static_cast<StorageIndex*>(m_cholmodFactor->super);
// pi[k] == offset to the description of row indices
StorageIndex* pi = static_cast<StorageIndex*>(m_cholmodFactor->pi);
// px[k] == offset to the respective dense block
StorageIndex* px = static_cast<StorageIndex*>(m_cholmodFactor->px);
Index nb_super_nodes = m_cholmodFactor->nsuper;
for (Index k = 0; k < nb_super_nodes; ++k) {
StorageIndex ncols = super[k + 1] - super[k];
StorageIndex nrows = pi[k + 1] - pi[k];
Map<const Array<Scalar, 1, Dynamic>, 0, InnerStride<> > sk(x + px[k], ncols, InnerStride<>(nrows + 1));
logDet += sk.real().log().sum();
}
} else {
// Simplicial factorization stored as standard CSC matrix.
StorageIndex* p = static_cast<StorageIndex*>(m_cholmodFactor->p);
Index size = m_cholmodFactor->n;
for (Index k = 0; k < size; ++k) logDet += log(real(x[p[k]]));
}
if (m_cholmodFactor->is_ll) logDet *= 2.0;
return logDet;
}
template <typename Stream>
void dumpMemory(Stream& /*s*/) {}
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
double m_shiftOffset[2];
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLLT
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical
* interest. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices X and B can be
* either dense or sparse.
*
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non
* compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLLT
*/
template <typename MatrixType_, int UpLo_ = Lower>
class CholmodSimplicialLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT<MatrixType_, UpLo_> > {
typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLLT> Base;
using Base::m_cholmod;
public:
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef TriangularView<const MatrixType, Eigen::Lower> MatrixL;
typedef TriangularView<const typename MatrixType::AdjointReturnType, Eigen::Upper> MatrixU;
CholmodSimplicialLLT() : Base() { init(); }
CholmodSimplicialLLT(const MatrixType& matrix) : Base() {
init();
this->compute(matrix);
}
~CholmodSimplicialLLT() {}
/** \returns an expression of the factor L */
inline MatrixL matrixL() const { return viewAsEigen<Scalar, StorageIndex>(*Base::m_cholmodFactor); }
/** \returns an expression of the factor U (= L^*) */
inline MatrixU matrixU() const { return matrixL().adjoint(); }
protected:
void init() {
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLDLT
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical
* interest. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices X and B can be
* either dense or sparse.
*
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non
* compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept, class CholmodSupernodalLLT, class SimplicialLDLT
*/
template <typename MatrixType_, int UpLo_ = Lower>
class CholmodSimplicialLDLT : public CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT<MatrixType_, UpLo_> > {
typedef CholmodBase<MatrixType_, UpLo_, CholmodSimplicialLDLT> Base;
using Base::m_cholmod;
public:
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, Dynamic, 1> VectorType;
typedef TriangularView<const MatrixType, Eigen::UnitLower> MatrixL;
typedef TriangularView<const typename MatrixType::AdjointReturnType, Eigen::UnitUpper> MatrixU;
CholmodSimplicialLDLT() : Base() { init(); }
CholmodSimplicialLDLT(const MatrixType& matrix) : Base() {
init();
this->compute(matrix);
}
~CholmodSimplicialLDLT() {}
/** \returns a vector expression of the diagonal D */
inline VectorType vectorD() const {
auto cholmodL = viewAsEigen<Scalar, StorageIndex>(*Base::m_cholmodFactor);
VectorType D{cholmodL.rows()};
for (Index k = 0; k < cholmodL.outerSize(); ++k) {
typename decltype(cholmodL)::InnerIterator it{cholmodL, k};
D(k) = it.value();
}
return D;
}
/** \returns an expression of the factor L */
inline MatrixL matrixL() const { return viewAsEigen<Scalar, StorageIndex>(*Base::m_cholmodFactor); }
/** \returns an expression of the factor U (= L^*) */
inline MatrixU matrixU() const { return matrixL().adjoint(); }
protected:
void init() {
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSupernodalLLT
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
* using the Cholmod library.
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non
* compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept
*/
template <typename MatrixType_, int UpLo_ = Lower>
class CholmodSupernodalLLT : public CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT<MatrixType_, UpLo_> > {
typedef CholmodBase<MatrixType_, UpLo_, CholmodSupernodalLLT> Base;
using Base::m_cholmod;
public:
typedef MatrixType_ MatrixType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
CholmodSupernodalLLT() : Base() { init(); }
CholmodSupernodalLLT(const MatrixType& matrix) : Base() {
init();
this->compute(matrix);
}
~CholmodSupernodalLLT() {}
/** \returns an expression of the factor L */
inline MatrixType matrixL() const {
// Convert Cholmod factor's supernodal storage format to Eigen's CSC storage format
cholmod_sparse* cholmodL = internal::cm_factor_to_sparse(*Base::m_cholmodFactor, m_cholmod);
MatrixType L = viewAsEigen<Scalar, StorageIndex>(*cholmodL);
internal::cm_free_sparse<StorageIndex>(cholmodL, m_cholmod);
return L;
}
/** \returns an expression of the factor U (= L^*) */
inline MatrixType matrixU() const { return matrixL().adjoint(); }
protected:
void init() {
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodDecomposition
* \brief A general Cholesky factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* This variant permits to change the underlying Cholesky method at runtime.
* On the other hand, it does not provide access to the result of the factorization.
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
*
* \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam UpLo_ the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* \implsparsesolverconcept
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non
* compressed.
*
* \warning Only double precision real and complex scalar types are supported by Cholmod.
*
* \sa \ref TutorialSparseSolverConcept
*/
template <typename MatrixType_, int UpLo_ = Lower>
class CholmodDecomposition : public CholmodBase<MatrixType_, UpLo_, CholmodDecomposition<MatrixType_, UpLo_> > {
typedef CholmodBase<MatrixType_, UpLo_, CholmodDecomposition> Base;
using Base::m_cholmod;
public:
typedef MatrixType_ MatrixType;
CholmodDecomposition() : Base() { init(); }
CholmodDecomposition(const MatrixType& matrix) : Base() {
init();
this->compute(matrix);
}
~CholmodDecomposition() {}
void setMode(CholmodMode mode) {
switch (mode) {
case CholmodAuto:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
break;
case CholmodSimplicialLLt:
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
break;
case CholmodSupernodalLLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
break;
case CholmodLDLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
break;
default:
break;
}
}
protected:
void init() {
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
}
};
} // end namespace Eigen
#endif // EIGEN_CHOLMODSUPPORT_H