| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_QUATERNION_H |
| #define EIGEN_QUATERNION_H |
| // IWYU pragma: private |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| /*************************************************************************** |
| * Definition of QuaternionBase<Derived> |
| * The implementation is at the end of the file |
| ***************************************************************************/ |
| |
| namespace internal { |
| template <typename Other, int OtherRows = Other::RowsAtCompileTime, int OtherCols = Other::ColsAtCompileTime> |
| struct quaternionbase_assign_impl; |
| } |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * \class QuaternionBase |
| * \brief Base class for quaternion expressions |
| * \tparam Derived derived type (CRTP) |
| * \sa class Quaternion |
| */ |
| template <class Derived> |
| class QuaternionBase : public RotationBase<Derived, 3> { |
| public: |
| typedef RotationBase<Derived, 3> Base; |
| |
| using Base::operator*; |
| using Base::derived; |
| |
| typedef typename internal::traits<Derived>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef typename internal::traits<Derived>::Coefficients Coefficients; |
| typedef typename Coefficients::CoeffReturnType CoeffReturnType; |
| typedef std::conditional_t<bool(internal::traits<Derived>::Flags& LvalueBit), Scalar&, CoeffReturnType> |
| NonConstCoeffReturnType; |
| |
| enum { Flags = Eigen::internal::traits<Derived>::Flags }; |
| |
| // typedef typename Matrix<Scalar,4,1> Coefficients; |
| /** the type of a 3D vector */ |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| /** the equivalent rotation matrix type */ |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| /** the equivalent angle-axis type */ |
| typedef AngleAxis<Scalar> AngleAxisType; |
| |
| /** \returns the \c x coefficient */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); } |
| /** \returns the \c y coefficient */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); } |
| /** \returns the \c z coefficient */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); } |
| /** \returns the \c w coefficient */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); } |
| |
| /** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); } |
| /** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); } |
| /** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); } |
| /** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */ |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); } |
| |
| /** \returns a read-only vector expression of the imaginary part (x,y,z) */ |
| EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients, 3> vec() const { return coeffs().template head<3>(); } |
| |
| /** \returns a vector expression of the imaginary part (x,y,z) */ |
| EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients, 3> vec() { return coeffs().template head<3>(); } |
| |
| /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ |
| EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { |
| return derived().coeffs(); |
| } |
| |
| /** \returns a vector expression of the coefficients (x,y,z,w) */ |
| EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); } |
| |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other); |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other); |
| |
| // disabled this copy operator as it is giving very strange compilation errors when compiling |
| // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's |
| // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase |
| // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. |
| // Derived& operator=(const QuaternionBase& other) |
| // { return operator=<Derived>(other); } |
| |
| EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa); |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m); |
| |
| /** \returns a quaternion representing an identity rotation |
| * \sa MatrixBase::Identity() |
| */ |
| EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { |
| return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); |
| } |
| |
| /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() |
| */ |
| EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { |
| coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); |
| return *this; |
| } |
| |
| /** \returns the squared norm of the quaternion's coefficients |
| * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() |
| */ |
| EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } |
| |
| /** \returns the norm of the quaternion's coefficients |
| * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() |
| */ |
| EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); } |
| |
| /** Normalizes the quaternion \c *this |
| * \sa normalized(), MatrixBase::normalize() */ |
| EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); } |
| /** \returns a normalized copy of \c *this |
| * \sa normalize(), MatrixBase::normalized() */ |
| EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); } |
| |
| /** \returns the dot product of \c *this and \a other |
| * Geometrically speaking, the dot product of two unit quaternions |
| * corresponds to the cosine of half the angle between the two rotations. |
| * \sa angularDistance() |
| */ |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { |
| return coeffs().dot(other.coeffs()); |
| } |
| |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const; |
| |
| /** \returns an equivalent 3x3 rotation matrix */ |
| EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const; |
| |
| /** \returns the quaternion which transform \a a into \a b through a rotation */ |
| template <typename Derived1, typename Derived2> |
| EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator*(const QuaternionBase<OtherDerived>& q) const; |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*=(const QuaternionBase<OtherDerived>& q); |
| |
| /** \returns the quaternion describing the inverse rotation */ |
| EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const; |
| |
| /** \returns the conjugated quaternion */ |
| EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const; |
| |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const; |
| |
| /** \returns true if each coefficients of \c *this and \a other are all exactly equal. |
| * \warning When using floating point scalar values you probably should rather use a |
| * fuzzy comparison such as isApprox() |
| * \sa isApprox(), operator!= */ |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const { |
| return coeffs() == other.coeffs(); |
| } |
| |
| /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. |
| * \warning When using floating point scalar values you probably should rather use a |
| * fuzzy comparison such as isApprox() |
| * \sa isApprox(), operator== */ |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const { |
| return coeffs() != other.coeffs(); |
| } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, |
| const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const { |
| return coeffs().isApprox(other.coeffs(), prec); |
| } |
| |
| /** return the result vector of \a v through the rotation*/ |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const; |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived, Quaternion<NewScalarType> >::type cast() const; |
| |
| #else |
| |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline std::enable_if_t<internal::is_same<Scalar, NewScalarType>::value, const Derived&> cast() |
| const { |
| return derived(); |
| } |
| |
| template <typename NewScalarType> |
| EIGEN_DEVICE_FUNC inline std::enable_if_t<!internal::is_same<Scalar, NewScalarType>::value, |
| Quaternion<NewScalarType> > |
| cast() const { |
| return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>()); |
| } |
| #endif |
| |
| #ifndef EIGEN_NO_IO |
| friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) { |
| s << q.x() << "i + " << q.y() << "j + " << q.z() << "k" |
| << " + " << q.w(); |
| return s; |
| } |
| #endif |
| |
| #ifdef EIGEN_QUATERNIONBASE_PLUGIN |
| #include EIGEN_QUATERNIONBASE_PLUGIN |
| #endif |
| protected: |
| EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase) |
| EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase) |
| }; |
| |
| /*************************************************************************** |
| * Definition/implementation of Quaternion<Scalar> |
| ***************************************************************************/ |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * \class Quaternion |
| * |
| * \brief The quaternion class used to represent 3D orientations and rotations |
| * |
| * \tparam Scalar_ the scalar type, i.e., the type of the coefficients |
| * \tparam Options_ controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is |
| * AutoAlign. |
| * |
| * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of |
| * orientations and rotations of objects in three dimensions. Compared to other representations |
| * like Euler angles or 3x3 matrices, quaternions offer the following advantages: |
| * \li \b compact storage (4 scalars) |
| * \li \b efficient to compose (28 flops), |
| * \li \b stable spherical interpolation |
| * |
| * The following two typedefs are provided for convenience: |
| * \li \c Quaternionf for \c float |
| * \li \c Quaterniond for \c double |
| * |
| * \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not |
| * normalized. |
| * |
| * \sa class AngleAxis, class Transform |
| */ |
| |
| namespace internal { |
| template <typename Scalar_, int Options_> |
| struct traits<Quaternion<Scalar_, Options_> > { |
| typedef Quaternion<Scalar_, Options_> PlainObject; |
| typedef Scalar_ Scalar; |
| typedef Matrix<Scalar_, 4, 1, Options_> Coefficients; |
| enum { Alignment = internal::traits<Coefficients>::Alignment, Flags = LvalueBit }; |
| }; |
| } // namespace internal |
| |
| template <typename Scalar_, int Options_> |
| class Quaternion : public QuaternionBase<Quaternion<Scalar_, Options_> > { |
| public: |
| typedef QuaternionBase<Quaternion<Scalar_, Options_> > Base; |
| enum { NeedsAlignment = internal::traits<Quaternion>::Alignment > 0 }; |
| |
| typedef Scalar_ Scalar; |
| |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion) |
| using Base::operator*=; |
| |
| typedef typename internal::traits<Quaternion>::Coefficients Coefficients; |
| typedef typename Base::AngleAxisType AngleAxisType; |
| |
| /** Default constructor leaving the quaternion uninitialized. */ |
| EIGEN_DEVICE_FUNC inline Quaternion() {} |
| |
| /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from |
| * its four coefficients \a w, \a x, \a y and \a z. |
| * |
| * \warning Note the order of the arguments: the real \a w coefficient first, |
| * while internally the coefficients are stored in the following order: |
| * [\c x, \c y, \c z, \c w] |
| */ |
| EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) |
| : m_coeffs(x, y, z, w) {} |
| |
| /** Constructs and initializes a quaternion from its real part as a scalar, |
| * and its imaginary part as a 3-vector [\c x, \c y, \c z] |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Eigen::MatrixBase<Derived>& vec) |
| : m_coeffs(vec.x(), vec.y(), vec.z(), w) { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3); |
| } |
| |
| /** Constructs and initialize a quaternion from the array data */ |
| EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {} |
| |
| /** Copy constructor */ |
| template <class Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { |
| this->Base::operator=(other); |
| } |
| |
| /** Constructs and initializes a quaternion from the angle-axis \a aa */ |
| EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } |
| |
| /** Constructs and initializes a quaternion from either: |
| * - a rotation matrix expression, |
| * - a 4D vector expression representing quaternion coefficients in the order [\c x, \c y, \c z, \c w]. |
| */ |
| template <typename Derived> |
| EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { |
| *this = other; |
| } |
| |
| /** Explicit copy constructor with scalar conversion */ |
| template <typename OtherScalar, int OtherOptions> |
| EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) { |
| m_coeffs = other.coeffs().template cast<Scalar>(); |
| } |
| |
| // We define a copy constructor, which means we don't get an implicit move constructor or assignment operator. |
| /** Default move constructor */ |
| EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other) |
| EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) |
| : m_coeffs(std::move(other.coeffs())) {} |
| |
| /** Default move assignment operator */ |
| EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other) |
| EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) { |
| m_coeffs = std::move(other.coeffs()); |
| return *this; |
| } |
| |
| EIGEN_DEVICE_FUNC static Quaternion UnitRandom(); |
| |
| template <typename Derived1, typename Derived2> |
| EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b); |
| |
| EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } |
| EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } |
| |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment)) |
| |
| #ifdef EIGEN_QUATERNION_PLUGIN |
| #include EIGEN_QUATERNION_PLUGIN |
| #endif |
| |
| protected: |
| Coefficients m_coeffs; |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| EIGEN_STATIC_ASSERT((Options_ & DontAlign) == Options_, INVALID_MATRIX_TEMPLATE_PARAMETERS) |
| #endif |
| }; |
| |
| /** \ingroup Geometry_Module |
| * single precision quaternion type */ |
| typedef Quaternion<float> Quaternionf; |
| /** \ingroup Geometry_Module |
| * double precision quaternion type */ |
| typedef Quaternion<double> Quaterniond; |
| |
| /*************************************************************************** |
| * Specialization of Map<Quaternion<Scalar>> |
| ***************************************************************************/ |
| |
| namespace internal { |
| template <typename Scalar_, int Options_> |
| struct traits<Map<Quaternion<Scalar_>, Options_> > |
| : traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > { |
| typedef Map<Matrix<Scalar_, 4, 1>, Options_> Coefficients; |
| }; |
| } // namespace internal |
| |
| namespace internal { |
| template <typename Scalar_, int Options_> |
| struct traits<Map<const Quaternion<Scalar_>, Options_> > |
| : traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > { |
| typedef Map<const Matrix<Scalar_, 4, 1>, Options_> Coefficients; |
| typedef traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > TraitsBase; |
| enum { Flags = TraitsBase::Flags & ~LvalueBit }; |
| }; |
| } // namespace internal |
| |
| /** \ingroup Geometry_Module |
| * \brief Quaternion expression mapping a constant memory buffer |
| * |
| * \tparam Scalar_ the type of the Quaternion coefficients |
| * \tparam Options_ see class Map |
| * |
| * This is a specialization of class Map for Quaternion. This class allows to view |
| * a 4 scalar memory buffer as an Eigen's Quaternion object. |
| * |
| * \sa class Map, class Quaternion, class QuaternionBase |
| */ |
| template <typename Scalar_, int Options_> |
| class Map<const Quaternion<Scalar_>, Options_> : public QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > { |
| public: |
| typedef QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > Base; |
| |
| typedef Scalar_ Scalar; |
| typedef typename internal::traits<Map>::Coefficients Coefficients; |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) |
| using Base::operator*=; |
| |
| /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
| * |
| * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: |
| * \code *coeffs == {x, y, z, w} \endcode |
| * |
| * If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */ |
| EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} |
| |
| EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } |
| |
| protected: |
| const Coefficients m_coeffs; |
| }; |
| |
| /** \ingroup Geometry_Module |
| * \brief Expression of a quaternion from a memory buffer |
| * |
| * \tparam Scalar_ the type of the Quaternion coefficients |
| * \tparam Options_ see class Map |
| * |
| * This is a specialization of class Map for Quaternion. This class allows to view |
| * a 4 scalar memory buffer as an Eigen's Quaternion object. |
| * |
| * \sa class Map, class Quaternion, class QuaternionBase |
| */ |
| template <typename Scalar_, int Options_> |
| class Map<Quaternion<Scalar_>, Options_> : public QuaternionBase<Map<Quaternion<Scalar_>, Options_> > { |
| public: |
| typedef QuaternionBase<Map<Quaternion<Scalar_>, Options_> > Base; |
| |
| typedef Scalar_ Scalar; |
| typedef typename internal::traits<Map>::Coefficients Coefficients; |
| EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map) |
| using Base::operator*=; |
| |
| /** Constructs a Mapped Quaternion object from the pointer \a coeffs |
| * |
| * The pointer \a coeffs must reference the four coefficients of Quaternion in the following order: |
| * \code *coeffs == {x, y, z, w} \endcode |
| * |
| * If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */ |
| EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} |
| |
| EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; } |
| EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; } |
| |
| protected: |
| Coefficients m_coeffs; |
| }; |
| |
| /** \ingroup Geometry_Module |
| * Map an unaligned array of single precision scalars as a quaternion */ |
| typedef Map<Quaternion<float>, 0> QuaternionMapf; |
| /** \ingroup Geometry_Module |
| * Map an unaligned array of double precision scalars as a quaternion */ |
| typedef Map<Quaternion<double>, 0> QuaternionMapd; |
| /** \ingroup Geometry_Module |
| * Map a 16-byte aligned array of single precision scalars as a quaternion */ |
| typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf; |
| /** \ingroup Geometry_Module |
| * Map a 16-byte aligned array of double precision scalars as a quaternion */ |
| typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd; |
| |
| /*************************************************************************** |
| * Implementation of QuaternionBase methods |
| ***************************************************************************/ |
| |
| // Generic Quaternion * Quaternion product |
| // This product can be specialized for a given architecture via the Arch template argument. |
| namespace internal { |
| template <int Arch, class Derived1, class Derived2, typename Scalar> |
| struct quat_product { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, |
| const QuaternionBase<Derived2>& b) { |
| return Quaternion<Scalar>(a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), |
| a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), |
| a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), |
| a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()); |
| } |
| }; |
| } // namespace internal |
| |
| /** \returns the concatenation of two rotations as a quaternion-quaternion product */ |
| template <class Derived> |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar> |
| QuaternionBase<Derived>::operator*(const QuaternionBase<OtherDerived>& other) const { |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| return internal::quat_product<Architecture::Target, Derived, OtherDerived, |
| typename internal::traits<Derived>::Scalar>::run(*this, other); |
| } |
| |
| /** \sa operator*(Quaternion) */ |
| template <class Derived> |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*=( |
| const QuaternionBase<OtherDerived>& other) { |
| derived() = derived() * other.derived(); |
| return derived(); |
| } |
| |
| /** Rotation of a vector by a quaternion. |
| * \remarks If the quaternion is used to rotate several points (>1) |
| * then it is much more efficient to first convert it to a 3x3 Matrix. |
| * Comparison of the operation cost for n transformations: |
| * - Quaternion2: 30n |
| * - Via a Matrix3: 24 + 15n |
| */ |
| template <class Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3 |
| QuaternionBase<Derived>::_transformVector(const Vector3& v) const { |
| // Note that this algorithm comes from the optimization by hand |
| // of the conversion to a Matrix followed by a Matrix/Vector product. |
| // It appears to be much faster than the common algorithm found |
| // in the literature (30 versus 39 flops). It also requires two |
| // Vector3 as temporaries. |
| Vector3 uv = this->vec().cross(v); |
| uv += uv; |
| return v + this->w() * uv + this->vec().cross(uv); |
| } |
| |
| template <class Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=( |
| const QuaternionBase<Derived>& other) { |
| coeffs() = other.coeffs(); |
| return derived(); |
| } |
| |
| template <class Derived> |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=( |
| const QuaternionBase<OtherDerived>& other) { |
| coeffs() = other.coeffs(); |
| return derived(); |
| } |
| |
| /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this |
| */ |
| template <class Derived> |
| EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) { |
| EIGEN_USING_STD(cos) |
| EIGEN_USING_STD(sin) |
| Scalar ha = Scalar(0.5) * aa.angle(); // Scalar(0.5) to suppress precision loss warnings |
| this->w() = cos(ha); |
| this->vec() = sin(ha) * aa.axis(); |
| return derived(); |
| } |
| |
| /** Set \c *this from the expression \a xpr: |
| * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion |
| * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix |
| * and \a xpr is converted to a quaternion |
| */ |
| |
| template <class Derived> |
| template <class MatrixDerived> |
| EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) { |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived()); |
| return derived(); |
| } |
| |
| /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to |
| * be normalized, otherwise the result is undefined. |
| */ |
| template <class Derived> |
| EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 QuaternionBase<Derived>::toRotationMatrix( |
| void) const { |
| // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) |
| // if not inlined then the cost of the return by value is huge ~ +35%, |
| // however, not inlining this function is an order of magnitude slower, so |
| // it has to be inlined, and so the return by value is not an issue |
| Matrix3 res; |
| |
| const Scalar tx = Scalar(2) * this->x(); |
| const Scalar ty = Scalar(2) * this->y(); |
| const Scalar tz = Scalar(2) * this->z(); |
| const Scalar twx = tx * this->w(); |
| const Scalar twy = ty * this->w(); |
| const Scalar twz = tz * this->w(); |
| const Scalar txx = tx * this->x(); |
| const Scalar txy = ty * this->x(); |
| const Scalar txz = tz * this->x(); |
| const Scalar tyy = ty * this->y(); |
| const Scalar tyz = tz * this->y(); |
| const Scalar tzz = tz * this->z(); |
| |
| res.coeffRef(0, 0) = Scalar(1) - (tyy + tzz); |
| res.coeffRef(0, 1) = txy - twz; |
| res.coeffRef(0, 2) = txz + twy; |
| res.coeffRef(1, 0) = txy + twz; |
| res.coeffRef(1, 1) = Scalar(1) - (txx + tzz); |
| res.coeffRef(1, 2) = tyz - twx; |
| res.coeffRef(2, 0) = txz - twy; |
| res.coeffRef(2, 1) = tyz + twx; |
| res.coeffRef(2, 2) = Scalar(1) - (txx + tyy); |
| |
| return res; |
| } |
| |
| /** Sets \c *this to be a quaternion representing a rotation between |
| * the two arbitrary vectors \a a and \a b. In other words, the built |
| * rotation represent a rotation sending the line of direction \a a |
| * to the line of direction \a b, both lines passing through the origin. |
| * |
| * \returns a reference to \c *this. |
| * |
| * Note that the two input vectors do \b not have to be normalized, and |
| * do not need to have the same norm. |
| */ |
| template <class Derived> |
| template <typename Derived1, typename Derived2> |
| EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, |
| const MatrixBase<Derived2>& b) { |
| EIGEN_USING_STD(sqrt) |
| Vector3 v0 = a.normalized(); |
| Vector3 v1 = b.normalized(); |
| Scalar c = v1.dot(v0); |
| |
| // if dot == -1, vectors are nearly opposites |
| // => accurately compute the rotation axis by computing the |
| // intersection of the two planes. This is done by solving: |
| // x^T v0 = 0 |
| // x^T v1 = 0 |
| // under the constraint: |
| // ||x|| = 1 |
| // which yields a singular value problem |
| if (c < Scalar(-1) + NumTraits<Scalar>::dummy_precision()) { |
| c = numext::maxi(c, Scalar(-1)); |
| Matrix<Scalar, 2, 3> m; |
| m << v0.transpose(), v1.transpose(); |
| JacobiSVD<Matrix<Scalar, 2, 3>, ComputeFullV> svd(m); |
| Vector3 axis = svd.matrixV().col(2); |
| |
| Scalar w2 = (Scalar(1) + c) * Scalar(0.5); |
| this->w() = sqrt(w2); |
| this->vec() = axis * sqrt(Scalar(1) - w2); |
| return derived(); |
| } |
| Vector3 axis = v0.cross(v1); |
| Scalar s = sqrt((Scalar(1) + c) * Scalar(2)); |
| Scalar invs = Scalar(1) / s; |
| this->vec() = axis * invs; |
| this->w() = s * Scalar(0.5); |
| |
| return derived(); |
| } |
| |
| /** \returns a random unit quaternion following a uniform distribution law on SO(3) |
| * |
| * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html |
| */ |
| template <typename Scalar, int Options> |
| EIGEN_DEVICE_FUNC Quaternion<Scalar, Options> Quaternion<Scalar, Options>::UnitRandom() { |
| EIGEN_USING_STD(sqrt) |
| EIGEN_USING_STD(sin) |
| EIGEN_USING_STD(cos) |
| const Scalar u1 = internal::random<Scalar>(0, 1), u2 = internal::random<Scalar>(0, 2 * EIGEN_PI), |
| u3 = internal::random<Scalar>(0, 2 * EIGEN_PI); |
| const Scalar a = sqrt(Scalar(1) - u1), b = sqrt(u1); |
| return Quaternion(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3)); |
| } |
| |
| /** Returns a quaternion representing a rotation between |
| * the two arbitrary vectors \a a and \a b. In other words, the built |
| * rotation represent a rotation sending the line of direction \a a |
| * to the line of direction \a b, both lines passing through the origin. |
| * |
| * \returns resulting quaternion |
| * |
| * Note that the two input vectors do \b not have to be normalized, and |
| * do not need to have the same norm. |
| */ |
| template <typename Scalar, int Options> |
| template <typename Derived1, typename Derived2> |
| EIGEN_DEVICE_FUNC Quaternion<Scalar, Options> Quaternion<Scalar, Options>::FromTwoVectors( |
| const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) { |
| Quaternion quat; |
| quat.setFromTwoVectors(a, b); |
| return quat; |
| } |
| |
| /** \returns the multiplicative inverse of \c *this |
| * Note that in most cases, i.e., if you simply want the opposite rotation, |
| * and/or the quaternion is normalized, then it is enough to use the conjugate. |
| * |
| * \sa QuaternionBase::conjugate() |
| */ |
| template <class Derived> |
| EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() |
| const { |
| // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? |
| Scalar n2 = this->squaredNorm(); |
| if (n2 > Scalar(0)) |
| return Quaternion<Scalar>(conjugate().coeffs() / n2); |
| else { |
| // return an invalid result to flag the error |
| return Quaternion<Scalar>(Coefficients::Zero()); |
| } |
| } |
| |
| // Generic conjugate of a Quaternion |
| namespace internal { |
| template <int Arch, class Derived, typename Scalar> |
| struct quat_conj { |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q) { |
| return Quaternion<Scalar>(q.w(), -q.x(), -q.y(), -q.z()); |
| } |
| }; |
| } // namespace internal |
| |
| /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse |
| * if the quaternion is normalized. |
| * The conjugate of a quaternion represents the opposite rotation. |
| * |
| * \sa Quaternion2::inverse() |
| */ |
| template <class Derived> |
| EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::conjugate() |
| const { |
| return internal::quat_conj<Architecture::Target, Derived, typename internal::traits<Derived>::Scalar>::run(*this); |
| } |
| |
| /** \returns the angle (in radian) between two rotations |
| * \sa dot() |
| */ |
| template <class Derived> |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar QuaternionBase<Derived>::angularDistance( |
| const QuaternionBase<OtherDerived>& other) const { |
| EIGEN_USING_STD(atan2) |
| Quaternion<Scalar> d = (*this) * other.conjugate(); |
| return Scalar(2) * atan2(d.vec().norm(), numext::abs(d.w())); |
| } |
| |
| /** \returns the spherical linear interpolation between the two quaternions |
| * \c *this and \a other at the parameter \a t in [0;1]. |
| * |
| * This represents an interpolation for a constant motion between \c *this and \a other, |
| * see also http://en.wikipedia.org/wiki/Slerp. |
| */ |
| template <class Derived> |
| template <class OtherDerived> |
| EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::slerp( |
| const Scalar& t, const QuaternionBase<OtherDerived>& other) const { |
| EIGEN_USING_STD(acos) |
| EIGEN_USING_STD(sin) |
| const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon(); |
| Scalar d = this->dot(other); |
| Scalar absD = numext::abs(d); |
| |
| Scalar scale0; |
| Scalar scale1; |
| |
| if (absD >= one) { |
| scale0 = Scalar(1) - t; |
| scale1 = t; |
| } else { |
| // theta is the angle between the 2 quaternions |
| Scalar theta = acos(absD); |
| Scalar sinTheta = sin(theta); |
| |
| scale0 = sin((Scalar(1) - t) * theta) / sinTheta; |
| scale1 = sin((t * theta)) / sinTheta; |
| } |
| if (d < Scalar(0)) scale1 = -scale1; |
| |
| return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs()); |
| } |
| |
| namespace internal { |
| |
| // set from a rotation matrix |
| template <typename Other> |
| struct quaternionbase_assign_impl<Other, 3, 3> { |
| typedef typename Other::Scalar Scalar; |
| template <class Derived> |
| EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) { |
| const typename internal::nested_eval<Other, 2>::type mat(a_mat); |
| EIGEN_USING_STD(sqrt) |
| // This algorithm comes from "Quaternion Calculus and Fast Animation", |
| // Ken Shoemake, 1987 SIGGRAPH course notes |
| Scalar t = mat.trace(); |
| if (t > Scalar(0)) { |
| t = sqrt(t + Scalar(1.0)); |
| q.w() = Scalar(0.5) * t; |
| t = Scalar(0.5) / t; |
| q.x() = (mat.coeff(2, 1) - mat.coeff(1, 2)) * t; |
| q.y() = (mat.coeff(0, 2) - mat.coeff(2, 0)) * t; |
| q.z() = (mat.coeff(1, 0) - mat.coeff(0, 1)) * t; |
| } else { |
| Index i = 0; |
| if (mat.coeff(1, 1) > mat.coeff(0, 0)) i = 1; |
| if (mat.coeff(2, 2) > mat.coeff(i, i)) i = 2; |
| Index j = (i + 1) % 3; |
| Index k = (j + 1) % 3; |
| |
| t = sqrt(mat.coeff(i, i) - mat.coeff(j, j) - mat.coeff(k, k) + Scalar(1.0)); |
| q.coeffs().coeffRef(i) = Scalar(0.5) * t; |
| t = Scalar(0.5) / t; |
| q.w() = (mat.coeff(k, j) - mat.coeff(j, k)) * t; |
| q.coeffs().coeffRef(j) = (mat.coeff(j, i) + mat.coeff(i, j)) * t; |
| q.coeffs().coeffRef(k) = (mat.coeff(k, i) + mat.coeff(i, k)) * t; |
| } |
| } |
| }; |
| |
| // set from a vector of coefficients assumed to be a quaternion |
| template <typename Other> |
| struct quaternionbase_assign_impl<Other, 4, 1> { |
| typedef typename Other::Scalar Scalar; |
| template <class Derived> |
| EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) { |
| q.coeffs() = vec; |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_QUATERNION_H |