blob: 1d8ded9bd63343bfef4026d6cb75f8c46065e639 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QUATERNION_H
#define EIGEN_QUATERNION_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
/***************************************************************************
* Definition of QuaternionBase<Derived>
* The implementation is at the end of the file
***************************************************************************/
namespace internal {
template <typename Other, int OtherRows = Other::RowsAtCompileTime, int OtherCols = Other::ColsAtCompileTime>
struct quaternionbase_assign_impl;
}
/** \geometry_module \ingroup Geometry_Module
* \class QuaternionBase
* \brief Base class for quaternion expressions
* \tparam Derived derived type (CRTP)
* \sa class Quaternion
*/
template <class Derived>
class QuaternionBase : public RotationBase<Derived, 3> {
public:
typedef RotationBase<Derived, 3> Base;
using Base::operator*;
using Base::derived;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::traits<Derived>::Coefficients Coefficients;
typedef typename Coefficients::CoeffReturnType CoeffReturnType;
typedef std::conditional_t<bool(internal::traits<Derived>::Flags& LvalueBit), Scalar&, CoeffReturnType>
NonConstCoeffReturnType;
enum { Flags = Eigen::internal::traits<Derived>::Flags };
// typedef typename Matrix<Scalar,4,1> Coefficients;
/** the type of a 3D vector */
typedef Matrix<Scalar, 3, 1> Vector3;
/** the equivalent rotation matrix type */
typedef Matrix<Scalar, 3, 3> Matrix3;
/** the equivalent angle-axis type */
typedef AngleAxis<Scalar> AngleAxisType;
/** \returns the \c x coefficient */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline CoeffReturnType w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType x() { return this->derived().coeffs().x(); }
/** \returns a reference to the \c y coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType y() { return this->derived().coeffs().y(); }
/** \returns a reference to the \c z coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType z() { return this->derived().coeffs().z(); }
/** \returns a reference to the \c w coefficient (if Derived is a non-const lvalue) */
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline NonConstCoeffReturnType w() { return this->derived().coeffs().w(); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients, 3> vec() const { return coeffs().template head<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients, 3> vec() { return coeffs().template head<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const {
return derived().coeffs();
}
/** \returns a vector expression of the coefficients (x,y,z,w) */
EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
// useful; however notice that we already have the templated operator= above and e.g. in MatrixBase
// we didn't have to add, in addition to templated operator=, such a non-templated copy operator.
// Derived& operator=(const QuaternionBase& other)
// { return operator=<Derived>(other); }
EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
template <class OtherDerived>
EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() {
return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0));
}
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/
EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() {
coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1);
return *this;
}
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
*/
EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
*/
EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
/** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */
EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
template <class OtherDerived>
EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const {
return coeffs().dot(other.coeffs());
}
template <class OtherDerived>
EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
/** \returns an equivalent 3x3 rotation matrix */
EIGEN_DEVICE_FUNC inline Matrix3 toRotationMatrix() const;
/** \returns the quaternion which transform \a a into \a b through a rotation */
template <typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator*(const QuaternionBase<OtherDerived>& q) const;
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*=(const QuaternionBase<OtherDerived>& q);
/** \returns the quaternion describing the inverse rotation */
EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
/** \returns the conjugated quaternion */
EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
template <class OtherDerived>
EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template <class OtherDerived>
EIGEN_DEVICE_FUNC inline bool operator==(const QuaternionBase<OtherDerived>& other) const {
return coeffs() == other.coeffs();
}
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template <class OtherDerived>
EIGEN_DEVICE_FUNC inline bool operator!=(const QuaternionBase<OtherDerived>& other) const {
return coeffs() != other.coeffs();
}
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template <class OtherDerived>
EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const {
return coeffs().isApprox(other.coeffs(), prec);
}
/** return the result vector of \a v through the rotation*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template <typename NewScalarType>
EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived, Quaternion<NewScalarType> >::type cast() const;
#else
template <typename NewScalarType>
EIGEN_DEVICE_FUNC inline std::enable_if_t<internal::is_same<Scalar, NewScalarType>::value, const Derived&> cast()
const {
return derived();
}
template <typename NewScalarType>
EIGEN_DEVICE_FUNC inline std::enable_if_t<!internal::is_same<Scalar, NewScalarType>::value,
Quaternion<NewScalarType> >
cast() const {
return Quaternion<NewScalarType>(coeffs().template cast<NewScalarType>());
}
#endif
#ifndef EIGEN_NO_IO
friend std::ostream& operator<<(std::ostream& s, const QuaternionBase<Derived>& q) {
s << q.x() << "i + " << q.y() << "j + " << q.z() << "k"
<< " + " << q.w();
return s;
}
#endif
#ifdef EIGEN_QUATERNIONBASE_PLUGIN
#include EIGEN_QUATERNIONBASE_PLUGIN
#endif
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(QuaternionBase)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(QuaternionBase)
};
/***************************************************************************
* Definition/implementation of Quaternion<Scalar>
***************************************************************************/
/** \geometry_module \ingroup Geometry_Module
*
* \class Quaternion
*
* \brief The quaternion class used to represent 3D orientations and rotations
*
* \tparam Scalar_ the scalar type, i.e., the type of the coefficients
* \tparam Options_ controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is
* AutoAlign.
*
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
* orientations and rotations of objects in three dimensions. Compared to other representations
* like Euler angles or 3x3 matrices, quaternions offer the following advantages:
* \li \b compact storage (4 scalars)
* \li \b efficient to compose (28 flops),
* \li \b stable spherical interpolation
*
* The following two typedefs are provided for convenience:
* \li \c Quaternionf for \c float
* \li \c Quaterniond for \c double
*
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not
* normalized.
*
* \sa class AngleAxis, class Transform
*/
namespace internal {
template <typename Scalar_, int Options_>
struct traits<Quaternion<Scalar_, Options_> > {
typedef Quaternion<Scalar_, Options_> PlainObject;
typedef Scalar_ Scalar;
typedef Matrix<Scalar_, 4, 1, Options_> Coefficients;
enum { Alignment = internal::traits<Coefficients>::Alignment, Flags = LvalueBit };
};
} // namespace internal
template <typename Scalar_, int Options_>
class Quaternion : public QuaternionBase<Quaternion<Scalar_, Options_> > {
public:
typedef QuaternionBase<Quaternion<Scalar_, Options_> > Base;
enum { NeedsAlignment = internal::traits<Quaternion>::Alignment > 0 };
typedef Scalar_ Scalar;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
using Base::operator*=;
typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
typedef typename Base::AngleAxisType AngleAxisType;
/** Default constructor leaving the quaternion uninitialized. */
EIGEN_DEVICE_FUNC inline Quaternion() {}
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z.
*
* \warning Note the order of the arguments: the real \a w coefficient first,
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z)
: m_coeffs(x, y, z, w) {}
/** Constructs and initializes a quaternion from its real part as a scalar,
* and its imaginary part as a 3-vector [\c x, \c y, \c z]
*/
template <typename Derived>
EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Eigen::MatrixBase<Derived>& vec)
: m_coeffs(vec.x(), vec.y(), vec.z(), w) {
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3);
}
/** Constructs and initialize a quaternion from the array data */
EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
/** Copy constructor */
template <class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) {
this->Base::operator=(other);
}
/** Constructs and initializes a quaternion from the angle-axis \a aa */
EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients in the order [\c x, \c y, \c z, \c w].
*/
template <typename Derived>
EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) {
*this = other;
}
/** Explicit copy constructor with scalar conversion */
template <typename OtherScalar, int OtherOptions>
EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other) {
m_coeffs = other.coeffs().template cast<Scalar>();
}
// We define a copy constructor, which means we don't get an implicit move constructor or assignment operator.
/** Default move constructor */
EIGEN_DEVICE_FUNC inline Quaternion(Quaternion&& other)
EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
: m_coeffs(std::move(other.coeffs())) {}
/** Default move assignment operator */
EIGEN_DEVICE_FUNC Quaternion& operator=(Quaternion&& other)
EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) {
m_coeffs = std::move(other.coeffs());
return *this;
}
EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
template <typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
#ifdef EIGEN_QUATERNION_PLUGIN
#include EIGEN_QUATERNION_PLUGIN
#endif
protected:
Coefficients m_coeffs;
#ifndef EIGEN_PARSED_BY_DOXYGEN
EIGEN_STATIC_ASSERT((Options_ & DontAlign) == Options_, INVALID_MATRIX_TEMPLATE_PARAMETERS)
#endif
};
/** \ingroup Geometry_Module
* single precision quaternion type */
typedef Quaternion<float> Quaternionf;
/** \ingroup Geometry_Module
* double precision quaternion type */
typedef Quaternion<double> Quaterniond;
/***************************************************************************
* Specialization of Map<Quaternion<Scalar>>
***************************************************************************/
namespace internal {
template <typename Scalar_, int Options_>
struct traits<Map<Quaternion<Scalar_>, Options_> >
: traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > {
typedef Map<Matrix<Scalar_, 4, 1>, Options_> Coefficients;
};
} // namespace internal
namespace internal {
template <typename Scalar_, int Options_>
struct traits<Map<const Quaternion<Scalar_>, Options_> >
: traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > {
typedef Map<const Matrix<Scalar_, 4, 1>, Options_> Coefficients;
typedef traits<Quaternion<Scalar_, (int(Options_) & Aligned) == Aligned ? AutoAlign : DontAlign> > TraitsBase;
enum { Flags = TraitsBase::Flags & ~LvalueBit };
};
} // namespace internal
/** \ingroup Geometry_Module
* \brief Quaternion expression mapping a constant memory buffer
*
* \tparam Scalar_ the type of the Quaternion coefficients
* \tparam Options_ see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template <typename Scalar_, int Options_>
class Map<const Quaternion<Scalar_>, Options_> : public QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > {
public:
typedef QuaternionBase<Map<const Quaternion<Scalar_>, Options_> > Base;
typedef Scalar_ Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
protected:
const Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* \brief Expression of a quaternion from a memory buffer
*
* \tparam Scalar_ the type of the Quaternion coefficients
* \tparam Options_ see class Map
*
* This is a specialization of class Map for Quaternion. This class allows to view
* a 4 scalar memory buffer as an Eigen's Quaternion object.
*
* \sa class Map, class Quaternion, class QuaternionBase
*/
template <typename Scalar_, int Options_>
class Map<Quaternion<Scalar_>, Options_> : public QuaternionBase<Map<Quaternion<Scalar_>, Options_> > {
public:
typedef QuaternionBase<Map<Quaternion<Scalar_>, Options_> > Base;
typedef Scalar_ Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
using Base::operator*=;
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
*
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter Options_ is set to #Aligned, then the pointer coeffs must be aligned. */
EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
protected:
Coefficients m_coeffs;
};
/** \ingroup Geometry_Module
* Map an unaligned array of single precision scalars as a quaternion */
typedef Map<Quaternion<float>, 0> QuaternionMapf;
/** \ingroup Geometry_Module
* Map an unaligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, 0> QuaternionMapd;
/** \ingroup Geometry_Module
* Map a 16-byte aligned array of single precision scalars as a quaternion */
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
/** \ingroup Geometry_Module
* Map a 16-byte aligned array of double precision scalars as a quaternion */
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
/***************************************************************************
* Implementation of QuaternionBase methods
***************************************************************************/
// Generic Quaternion * Quaternion product
// This product can be specialized for a given architecture via the Arch template argument.
namespace internal {
template <int Arch, class Derived1, class Derived2, typename Scalar>
struct quat_product {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a,
const QuaternionBase<Derived2>& b) {
return Quaternion<Scalar>(a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x());
}
};
} // namespace internal
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::operator*(const QuaternionBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT(
(internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
return internal::quat_product<Architecture::Target, Derived, OtherDerived,
typename internal::traits<Derived>::Scalar>::run(*this, other);
}
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*=(
const QuaternionBase<OtherDerived>& other) {
derived() = derived() * other.derived();
return derived();
}
/** Rotation of a vector by a quaternion.
* \remarks If the quaternion is used to rotate several points (>1)
* then it is much more efficient to first convert it to a 3x3 Matrix.
* Comparison of the operation cost for n transformations:
* - Quaternion2: 30n
* - Via a Matrix3: 24 + 15n
*/
template <class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
QuaternionBase<Derived>::_transformVector(const Vector3& v) const {
// Note that this algorithm comes from the optimization by hand
// of the conversion to a Matrix followed by a Matrix/Vector product.
// It appears to be much faster than the common algorithm found
// in the literature (30 versus 39 flops). It also requires two
// Vector3 as temporaries.
Vector3 uv = this->vec().cross(v);
uv += uv;
return v + this->w() * uv + this->vec().cross(uv);
}
template <class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(
const QuaternionBase<Derived>& other) {
coeffs() = other.coeffs();
return derived();
}
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(
const QuaternionBase<OtherDerived>& other) {
coeffs() = other.coeffs();
return derived();
}
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template <class Derived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa) {
EIGEN_USING_STD(cos)
EIGEN_USING_STD(sin)
Scalar ha = Scalar(0.5) * aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = cos(ha);
this->vec() = sin(ha) * aa.axis();
return derived();
}
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
* and \a xpr is converted to a quaternion
*/
template <class Derived>
template <class MatrixDerived>
EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr) {
EIGEN_STATIC_ASSERT(
(internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
return derived();
}
/** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to
* be normalized, otherwise the result is undefined.
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3 QuaternionBase<Derived>::toRotationMatrix(
void) const {
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
// if not inlined then the cost of the return by value is huge ~ +35%,
// however, not inlining this function is an order of magnitude slower, so
// it has to be inlined, and so the return by value is not an issue
Matrix3 res;
const Scalar tx = Scalar(2) * this->x();
const Scalar ty = Scalar(2) * this->y();
const Scalar tz = Scalar(2) * this->z();
const Scalar twx = tx * this->w();
const Scalar twy = ty * this->w();
const Scalar twz = tz * this->w();
const Scalar txx = tx * this->x();
const Scalar txy = ty * this->x();
const Scalar txz = tz * this->x();
const Scalar tyy = ty * this->y();
const Scalar tyz = tz * this->y();
const Scalar tzz = tz * this->z();
res.coeffRef(0, 0) = Scalar(1) - (tyy + tzz);
res.coeffRef(0, 1) = txy - twz;
res.coeffRef(0, 2) = txz + twy;
res.coeffRef(1, 0) = txy + twz;
res.coeffRef(1, 1) = Scalar(1) - (txx + tzz);
res.coeffRef(1, 2) = tyz - twx;
res.coeffRef(2, 0) = txz - twy;
res.coeffRef(2, 1) = tyz + twx;
res.coeffRef(2, 2) = Scalar(1) - (txx + tyy);
return res;
}
/** Sets \c *this to be a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
* rotation represent a rotation sending the line of direction \a a
* to the line of direction \a b, both lines passing through the origin.
*
* \returns a reference to \c *this.
*
* Note that the two input vectors do \b not have to be normalized, and
* do not need to have the same norm.
*/
template <class Derived>
template <typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a,
const MatrixBase<Derived2>& b) {
EIGEN_USING_STD(sqrt)
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Scalar c = v1.dot(v0);
// if dot == -1, vectors are nearly opposites
// => accurately compute the rotation axis by computing the
// intersection of the two planes. This is done by solving:
// x^T v0 = 0
// x^T v1 = 0
// under the constraint:
// ||x|| = 1
// which yields a singular value problem
if (c < Scalar(-1) + NumTraits<Scalar>::dummy_precision()) {
c = numext::maxi(c, Scalar(-1));
Matrix<Scalar, 2, 3> m;
m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar, 2, 3>, ComputeFullV> svd(m);
Vector3 axis = svd.matrixV().col(2);
Scalar w2 = (Scalar(1) + c) * Scalar(0.5);
this->w() = sqrt(w2);
this->vec() = axis * sqrt(Scalar(1) - w2);
return derived();
}
Vector3 axis = v0.cross(v1);
Scalar s = sqrt((Scalar(1) + c) * Scalar(2));
Scalar invs = Scalar(1) / s;
this->vec() = axis * invs;
this->w() = s * Scalar(0.5);
return derived();
}
/** \returns a random unit quaternion following a uniform distribution law on SO(3)
*
* \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
*/
template <typename Scalar, int Options>
EIGEN_DEVICE_FUNC Quaternion<Scalar, Options> Quaternion<Scalar, Options>::UnitRandom() {
EIGEN_USING_STD(sqrt)
EIGEN_USING_STD(sin)
EIGEN_USING_STD(cos)
const Scalar u1 = internal::random<Scalar>(0, 1), u2 = internal::random<Scalar>(0, 2 * EIGEN_PI),
u3 = internal::random<Scalar>(0, 2 * EIGEN_PI);
const Scalar a = sqrt(Scalar(1) - u1), b = sqrt(u1);
return Quaternion(a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
}
/** Returns a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
* rotation represent a rotation sending the line of direction \a a
* to the line of direction \a b, both lines passing through the origin.
*
* \returns resulting quaternion
*
* Note that the two input vectors do \b not have to be normalized, and
* do not need to have the same norm.
*/
template <typename Scalar, int Options>
template <typename Derived1, typename Derived2>
EIGEN_DEVICE_FUNC Quaternion<Scalar, Options> Quaternion<Scalar, Options>::FromTwoVectors(
const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b) {
Quaternion quat;
quat.setFromTwoVectors(a, b);
return quat;
}
/** \returns the multiplicative inverse of \c *this
* Note that in most cases, i.e., if you simply want the opposite rotation,
* and/or the quaternion is normalized, then it is enough to use the conjugate.
*
* \sa QuaternionBase::conjugate()
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse()
const {
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
if (n2 > Scalar(0))
return Quaternion<Scalar>(conjugate().coeffs() / n2);
else {
// return an invalid result to flag the error
return Quaternion<Scalar>(Coefficients::Zero());
}
}
// Generic conjugate of a Quaternion
namespace internal {
template <int Arch, class Derived, typename Scalar>
struct quat_conj {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q) {
return Quaternion<Scalar>(q.w(), -q.x(), -q.y(), -q.z());
}
};
} // namespace internal
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
*
* \sa Quaternion2::inverse()
*/
template <class Derived>
EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::conjugate()
const {
return internal::quat_conj<Architecture::Target, Derived, typename internal::traits<Derived>::Scalar>::run(*this);
}
/** \returns the angle (in radian) between two rotations
* \sa dot()
*/
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar QuaternionBase<Derived>::angularDistance(
const QuaternionBase<OtherDerived>& other) const {
EIGEN_USING_STD(atan2)
Quaternion<Scalar> d = (*this) * other.conjugate();
return Scalar(2) * atan2(d.vec().norm(), numext::abs(d.w()));
}
/** \returns the spherical linear interpolation between the two quaternions
* \c *this and \a other at the parameter \a t in [0;1].
*
* This represents an interpolation for a constant motion between \c *this and \a other,
* see also http://en.wikipedia.org/wiki/Slerp.
*/
template <class Derived>
template <class OtherDerived>
EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::slerp(
const Scalar& t, const QuaternionBase<OtherDerived>& other) const {
EIGEN_USING_STD(acos)
EIGEN_USING_STD(sin)
const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
Scalar d = this->dot(other);
Scalar absD = numext::abs(d);
Scalar scale0;
Scalar scale1;
if (absD >= one) {
scale0 = Scalar(1) - t;
scale1 = t;
} else {
// theta is the angle between the 2 quaternions
Scalar theta = acos(absD);
Scalar sinTheta = sin(theta);
scale0 = sin((Scalar(1) - t) * theta) / sinTheta;
scale1 = sin((t * theta)) / sinTheta;
}
if (d < Scalar(0)) scale1 = -scale1;
return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
}
namespace internal {
// set from a rotation matrix
template <typename Other>
struct quaternionbase_assign_impl<Other, 3, 3> {
typedef typename Other::Scalar Scalar;
template <class Derived>
EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat) {
const typename internal::nested_eval<Other, 2>::type mat(a_mat);
EIGEN_USING_STD(sqrt)
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
if (t > Scalar(0)) {
t = sqrt(t + Scalar(1.0));
q.w() = Scalar(0.5) * t;
t = Scalar(0.5) / t;
q.x() = (mat.coeff(2, 1) - mat.coeff(1, 2)) * t;
q.y() = (mat.coeff(0, 2) - mat.coeff(2, 0)) * t;
q.z() = (mat.coeff(1, 0) - mat.coeff(0, 1)) * t;
} else {
Index i = 0;
if (mat.coeff(1, 1) > mat.coeff(0, 0)) i = 1;
if (mat.coeff(2, 2) > mat.coeff(i, i)) i = 2;
Index j = (i + 1) % 3;
Index k = (j + 1) % 3;
t = sqrt(mat.coeff(i, i) - mat.coeff(j, j) - mat.coeff(k, k) + Scalar(1.0));
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
t = Scalar(0.5) / t;
q.w() = (mat.coeff(k, j) - mat.coeff(j, k)) * t;
q.coeffs().coeffRef(j) = (mat.coeff(j, i) + mat.coeff(i, j)) * t;
q.coeffs().coeffRef(k) = (mat.coeff(k, i) + mat.coeff(i, k)) * t;
}
}
};
// set from a vector of coefficients assumed to be a quaternion
template <typename Other>
struct quaternionbase_assign_impl<Other, 4, 1> {
typedef typename Other::Scalar Scalar;
template <class Derived>
EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec) {
q.coeffs() = vec;
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_QUATERNION_H