| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_BLAS_COMMON_H |
| #define EIGEN_BLAS_COMMON_H |
| |
| #ifdef __GNUC__ |
| #if __GNUC__ < 5 |
| // GCC < 5.0 does not like the global Scalar typedef |
| // we just keep shadow-warnings disabled permanently |
| #define EIGEN_PERMANENTLY_DISABLE_STUPID_WARNINGS |
| #endif |
| #endif |
| |
| #include "../Eigen/Core" |
| #include "../Eigen/Jacobi" |
| |
| #include <complex> |
| |
| #ifndef SCALAR |
| #error the token SCALAR must be defined to compile this file |
| #endif |
| |
| #include "blas.h" |
| |
| #include "BandTriangularSolver.h" |
| #include "GeneralRank1Update.h" |
| #include "PackedSelfadjointProduct.h" |
| #include "PackedTriangularMatrixVector.h" |
| #include "PackedTriangularSolverVector.h" |
| #include "Rank2Update.h" |
| |
| #define NOTR 0 |
| #define TR 1 |
| #define ADJ 2 |
| |
| #define LEFT 0 |
| #define RIGHT 1 |
| |
| #define UP 0 |
| #define LO 1 |
| |
| #define NUNIT 0 |
| #define UNIT 1 |
| |
| #define INVALID 0xff |
| |
| #define OP(X) \ |
| (((X) == 'N' || (X) == 'n') ? NOTR : ((X) == 'T' || (X) == 't') ? TR : ((X) == 'C' || (X) == 'c') ? ADJ : INVALID) |
| |
| #define SIDE(X) (((X) == 'L' || (X) == 'l') ? LEFT : ((X) == 'R' || (X) == 'r') ? RIGHT : INVALID) |
| |
| #define UPLO(X) (((X) == 'U' || (X) == 'u') ? UP : ((X) == 'L' || (X) == 'l') ? LO : INVALID) |
| |
| #define DIAG(X) (((X) == 'N' || (X) == 'n') ? NUNIT : ((X) == 'U' || (X) == 'u') ? UNIT : INVALID) |
| |
| inline bool check_op(const char* op) { return OP(*op) != 0xff; } |
| |
| inline bool check_side(const char* side) { return SIDE(*side) != 0xff; } |
| |
| inline bool check_uplo(const char* uplo) { return UPLO(*uplo) != 0xff; } |
| |
| typedef SCALAR Scalar; |
| typedef Eigen::NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> Complex; |
| |
| enum { IsComplex = Eigen::NumTraits<SCALAR>::IsComplex, Conj = IsComplex }; |
| |
| typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor> PlainMatrixType; |
| typedef Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>, 0, Eigen::OuterStride<> > |
| MatrixType; |
| typedef Eigen::Map<const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>, 0, |
| Eigen::OuterStride<> > |
| ConstMatrixType; |
| typedef Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, 1>, 0, Eigen::InnerStride<Eigen::Dynamic> > StridedVectorType; |
| typedef Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, 1> > CompactVectorType; |
| |
| template <typename T> |
| Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>, 0, Eigen::OuterStride<> > matrix( |
| T* data, int rows, int cols, int stride) { |
| return Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>, 0, Eigen::OuterStride<> >( |
| data, rows, cols, Eigen::OuterStride<>(stride)); |
| } |
| |
| template <typename T> |
| Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>, 0, Eigen::OuterStride<> > matrix( |
| const T* data, int rows, int cols, int stride) { |
| return Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::ColMajor>, 0, Eigen::OuterStride<> >( |
| data, rows, cols, Eigen::OuterStride<>(stride)); |
| } |
| |
| template <typename T> |
| Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1>, 0, Eigen::InnerStride<Eigen::Dynamic> > make_vector(T* data, int size, |
| int incr) { |
| return Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1>, 0, Eigen::InnerStride<Eigen::Dynamic> >( |
| data, size, Eigen::InnerStride<Eigen::Dynamic>(incr)); |
| } |
| |
| template <typename T> |
| Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1>, 0, Eigen::InnerStride<Eigen::Dynamic> > make_vector(const T* data, |
| int size, |
| int incr) { |
| return Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1>, 0, Eigen::InnerStride<Eigen::Dynamic> >( |
| data, size, Eigen::InnerStride<Eigen::Dynamic>(incr)); |
| } |
| |
| template <typename T> |
| Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1> > make_vector(T* data, int size) { |
| return Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, 1> >(data, size); |
| } |
| |
| template <typename T> |
| Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1> > make_vector(const T* data, int size) { |
| return Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1> >(data, size); |
| } |
| |
| template <typename T> |
| T* get_compact_vector(T* x, int n, int incx) { |
| if (incx == 1) return x; |
| |
| std::remove_const_t<T>* ret = new Scalar[n]; |
| if (incx < 0) |
| make_vector(ret, n) = make_vector(x, n, -incx).reverse(); |
| else |
| make_vector(ret, n) = make_vector(x, n, incx); |
| return ret; |
| } |
| |
| template <typename T> |
| T* copy_back(T* x_cpy, T* x, int n, int incx) { |
| if (x_cpy == x) return 0; |
| |
| if (incx < 0) |
| make_vector(x, n, -incx).reverse() = make_vector(x_cpy, n); |
| else |
| make_vector(x, n, incx) = make_vector(x_cpy, n); |
| return x_cpy; |
| } |
| |
| #ifndef EIGEN_BLAS_FUNC_SUFFIX |
| #define EIGEN_BLAS_FUNC_SUFFIX _ |
| #endif |
| |
| #define EIGEN_BLAS_FUNC_NAME(X) EIGEN_CAT(SCALAR_SUFFIX, EIGEN_CAT(X, EIGEN_BLAS_FUNC_SUFFIX)) |
| #define EIGEN_BLAS_FUNC(X) extern "C" void EIGEN_BLAS_FUNC_NAME(X) |
| |
| #endif // EIGEN_BLAS_COMMON_H |