| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/QR> |
| |
| template <typename HyperplaneType> |
| void hyperplane(const HyperplaneType &_plane) { |
| /* this test covers the following files: |
| Hyperplane.h |
| */ |
| using std::abs; |
| const Index dim = _plane.dim(); |
| enum { Options = HyperplaneType::Options }; |
| typedef typename HyperplaneType::Scalar Scalar; |
| typedef typename HyperplaneType::RealScalar RealScalar; |
| typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, HyperplaneType::AmbientDimAtCompileTime> MatrixType; |
| |
| VectorType p0 = VectorType::Random(dim); |
| VectorType p1 = VectorType::Random(dim); |
| |
| VectorType n0 = VectorType::Random(dim).normalized(); |
| VectorType n1 = VectorType::Random(dim).normalized(); |
| |
| HyperplaneType pl0(n0, p0); |
| HyperplaneType pl1(n1, p1); |
| HyperplaneType pl2 = pl1; |
| |
| Scalar s0 = internal::random<Scalar>(); |
| Scalar s1 = internal::random<Scalar>(); |
| |
| VERIFY_IS_APPROX(n1.dot(n1), Scalar(1)); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(pl0.absDistance(p0), Scalar(1)); |
| if (numext::abs2(s0) > RealScalar(1e-6)) |
| VERIFY_IS_APPROX(pl1.signedDistance(p1 + n1 * s0), s0); |
| else |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(pl1.signedDistance(pl1.projection(p0)), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1)); |
| |
| // transform |
| if (!NumTraits<Scalar>::IsComplex) { |
| MatrixType rot = MatrixType::Random(dim, dim).householderQr().householderQ(); |
| DiagonalMatrix<Scalar, HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random()); |
| Translation<Scalar, HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random()); |
| |
| while (scaling.diagonal().cwiseAbs().minCoeff() < RealScalar(1e-4)) scaling.diagonal() = VectorType::Random(); |
| |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot).absDistance(rot * p1), Scalar(1)); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot, Isometry).absDistance(rot * p1), Scalar(1)); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot * scaling).absDistance((rot * scaling) * p1), Scalar(1)); |
| VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1)); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( |
| pl2.transform(rot * scaling * translation).absDistance((rot * scaling * translation) * p1), Scalar(1)); |
| VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1)); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN(pl2.transform(rot * translation, Isometry).absDistance((rot * translation) * p1), |
| Scalar(1)); |
| VERIFY_IS_APPROX(pl2.normal().norm(), RealScalar(1)); |
| } |
| |
| // casting |
| const int Dim = HyperplaneType::AmbientDimAtCompileTime; |
| typedef typename GetDifferentType<Scalar>::type OtherScalar; |
| Hyperplane<OtherScalar, Dim, Options> hp1f = pl1.template cast<OtherScalar>(); |
| VERIFY_IS_APPROX(hp1f.template cast<Scalar>(), pl1); |
| Hyperplane<Scalar, Dim, Options> hp1d = pl1.template cast<Scalar>(); |
| VERIFY_IS_APPROX(hp1d.template cast<Scalar>(), pl1); |
| } |
| |
| template <typename Scalar> |
| void lines() { |
| using std::abs; |
| typedef Hyperplane<Scalar, 2> HLine; |
| typedef ParametrizedLine<Scalar, 2> PLine; |
| typedef Matrix<Scalar, 2, 1> Vector; |
| typedef Matrix<Scalar, 3, 1> CoeffsType; |
| |
| for (int i = 0; i < 10; i++) { |
| Vector center = Vector::Random(); |
| Vector u = Vector::Random(); |
| Vector v = Vector::Random(); |
| Scalar a = internal::random<Scalar>(); |
| while (abs(a - 1) < Scalar(1e-4)) a = internal::random<Scalar>(); |
| while (u.norm() < Scalar(1e-4)) u = Vector::Random(); |
| while (v.norm() < Scalar(1e-4)) v = Vector::Random(); |
| |
| HLine line_u = HLine::Through(center + u, center + a * u); |
| HLine line_v = HLine::Through(center + v, center + a * v); |
| |
| // the line equations should be normalized so that a^2+b^2=1 |
| VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); |
| VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); |
| |
| Vector result = line_u.intersection(line_v); |
| |
| // the lines should intersect at the point we called "center" |
| if (abs(a - 1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized())) < Scalar(0.9)) |
| VERIFY_IS_APPROX(result, center); |
| |
| // check conversions between two types of lines |
| PLine pl(line_u); // gcc 3.3 will crash if we don't name this variable. |
| HLine line_u2(pl); |
| CoeffsType converted_coeffs = line_u2.coeffs(); |
| if (line_u2.normal().dot(line_u.normal()) < Scalar(0)) converted_coeffs = -line_u2.coeffs(); |
| VERIFY(line_u.coeffs().isApprox(converted_coeffs)); |
| } |
| } |
| |
| template <typename Scalar> |
| void planes() { |
| using std::abs; |
| typedef Hyperplane<Scalar, 3> Plane; |
| typedef Matrix<Scalar, 3, 1> Vector; |
| |
| for (int i = 0; i < 10; i++) { |
| Vector v0 = Vector::Random(); |
| Vector v1(v0), v2(v0); |
| if (internal::random<double>(0, 1) > 0.25) v1 += Vector::Random(); |
| if (internal::random<double>(0, 1) > 0.25) |
| v2 += v1 * std::pow(internal::random<Scalar>(0, 1), internal::random<int>(1, 16)); |
| if (internal::random<double>(0, 1) > 0.25) |
| v2 += Vector::Random() * std::pow(internal::random<Scalar>(0, 1), internal::random<int>(1, 16)); |
| |
| Plane p0 = Plane::Through(v0, v1, v2); |
| |
| VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1)); |
| } |
| } |
| |
| template <typename Scalar> |
| void hyperplane_alignment() { |
| typedef Hyperplane<Scalar, 3, AutoAlign> Plane3a; |
| typedef Hyperplane<Scalar, 3, DontAlign> Plane3u; |
| |
| EIGEN_ALIGN_MAX Scalar array1[4]; |
| EIGEN_ALIGN_MAX Scalar array2[4]; |
| EIGEN_ALIGN_MAX Scalar array3[4 + 1]; |
| Scalar *array3u = array3 + 1; |
| |
| Plane3a *p1 = ::new (reinterpret_cast<void *>(array1)) Plane3a; |
| Plane3u *p2 = ::new (reinterpret_cast<void *>(array2)) Plane3u; |
| Plane3u *p3 = ::new (reinterpret_cast<void *>(array3u)) Plane3u; |
| |
| p1->coeffs().setRandom(); |
| *p2 = *p1; |
| *p3 = *p1; |
| |
| VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs()); |
| VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs()); |
| } |
| |
| EIGEN_DECLARE_TEST(geo_hyperplane) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(hyperplane(Hyperplane<float, 2>())); |
| CALL_SUBTEST_2(hyperplane(Hyperplane<float, 3>())); |
| CALL_SUBTEST_2(hyperplane(Hyperplane<float, 3, DontAlign>())); |
| CALL_SUBTEST_2(hyperplane_alignment<float>()); |
| CALL_SUBTEST_3(hyperplane(Hyperplane<double, 4>())); |
| CALL_SUBTEST_4(hyperplane(Hyperplane<std::complex<double>, 5>())); |
| CALL_SUBTEST_1(lines<float>()); |
| CALL_SUBTEST_3(lines<double>()); |
| CALL_SUBTEST_2(planes<float>()); |
| CALL_SUBTEST_5(planes<double>()); |
| } |
| } |