| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| #include "solverbase.h" |
| using namespace std; |
| |
| template <typename MatrixType> |
| typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { |
| return m.cwiseAbs().colwise().sum().maxCoeff(); |
| } |
| |
| template <typename MatrixType> |
| void lu_non_invertible() { |
| typedef typename MatrixType::RealScalar RealScalar; |
| /* this test covers the following files: |
| LU.h |
| */ |
| Index rows, cols, cols2; |
| if (MatrixType::RowsAtCompileTime == Dynamic) { |
| rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); |
| } else { |
| rows = MatrixType::RowsAtCompileTime; |
| } |
| if (MatrixType::ColsAtCompileTime == Dynamic) { |
| cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); |
| cols2 = internal::random<int>(2, EIGEN_TEST_MAX_SIZE); |
| } else { |
| cols2 = cols = MatrixType::ColsAtCompileTime; |
| } |
| |
| enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; |
| typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType; |
| typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType; |
| typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> CMatrixType; |
| typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> RMatrixType; |
| |
| Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1); |
| |
| // The image of the zero matrix should consist of a single (zero) column vector |
| VERIFY((MatrixType::Zero(rows, cols).fullPivLu().image(MatrixType::Zero(rows, cols)).cols() == 1)); |
| |
| // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols. |
| KernelMatrixType kernel = MatrixType::Zero(rows, cols).fullPivLu().kernel(); |
| VERIFY((kernel.fullPivLu().isInvertible())); |
| |
| MatrixType m1(rows, cols), m3(rows, cols2); |
| CMatrixType m2(cols, cols2); |
| createRandomPIMatrixOfRank(rank, rows, cols, m1); |
| |
| FullPivLU<MatrixType> lu; |
| |
| // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank |
| // of singular values are either 0 or 1. |
| // So it's not clear at all that the epsilon should play any role there. |
| lu.setThreshold(RealScalar(0.01)); |
| lu.compute(m1); |
| |
| MatrixType u(rows, cols); |
| u = lu.matrixLU().template triangularView<Upper>(); |
| RMatrixType l = RMatrixType::Identity(rows, rows); |
| l.block(0, 0, rows, (std::min)(rows, cols)).template triangularView<StrictlyLower>() = |
| lu.matrixLU().block(0, 0, rows, (std::min)(rows, cols)); |
| |
| VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l * u); |
| |
| KernelMatrixType m1kernel = lu.kernel(); |
| ImageMatrixType m1image = lu.image(m1); |
| |
| VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); |
| VERIFY(rank == lu.rank()); |
| VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); |
| VERIFY(!lu.isInjective()); |
| VERIFY(!lu.isInvertible()); |
| VERIFY(!lu.isSurjective()); |
| VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1); |
| VERIFY(m1image.fullPivLu().rank() == rank); |
| VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image); |
| |
| check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2); |
| |
| m2 = CMatrixType::Random(cols, cols2); |
| m3 = m1 * m2; |
| m2 = CMatrixType::Random(cols, cols2); |
| // test that the code, which does resize(), may be applied to an xpr |
| m2.block(0, 0, m2.rows(), m2.cols()) = lu.solve(m3); |
| VERIFY_IS_APPROX(m3, m1 * m2); |
| } |
| |
| template <typename MatrixType> |
| void lu_invertible() { |
| /* this test covers the following files: |
| FullPivLU.h |
| */ |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| Index size = MatrixType::RowsAtCompileTime; |
| if (size == Dynamic) size = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| FullPivLU<MatrixType> lu; |
| lu.setThreshold(RealScalar(0.01)); |
| do { |
| m1 = MatrixType::Random(size, size); |
| lu.compute(m1); |
| } while (!lu.isInvertible()); |
| |
| VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); |
| VERIFY(0 == lu.dimensionOfKernel()); |
| VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector |
| VERIFY(size == lu.rank()); |
| VERIFY(lu.isInjective()); |
| VERIFY(lu.isSurjective()); |
| VERIFY(lu.isInvertible()); |
| VERIFY(lu.image(m1).fullPivLu().isInvertible()); |
| |
| check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size); |
| |
| MatrixType m1_inverse = lu.inverse(); |
| m3 = MatrixType::Random(size, size); |
| m2 = lu.solve(m3); |
| VERIFY_IS_APPROX(m2, m1_inverse * m3); |
| |
| RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse); |
| const RealScalar rcond_est = lu.rcond(); |
| // Verify that the estimated condition number is within a factor of 10 of the |
| // truth. |
| VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); |
| |
| // Regression test for Bug 302 |
| MatrixType m4 = MatrixType::Random(size, size); |
| VERIFY_IS_APPROX(lu.solve(m3 * m4), lu.solve(m3) * m4); |
| } |
| |
| template <typename MatrixType> |
| void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime) { |
| /* this test covers the following files: |
| PartialPivLU.h |
| */ |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| m1.setRandom(); |
| PartialPivLU<MatrixType> plu(m1); |
| |
| VERIFY_IS_APPROX(m1, plu.reconstructedMatrix()); |
| |
| check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size); |
| |
| MatrixType m1_inverse = plu.inverse(); |
| m3 = MatrixType::Random(size, size); |
| m2 = plu.solve(m3); |
| VERIFY_IS_APPROX(m2, m1_inverse * m3); |
| |
| RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse); |
| const RealScalar rcond_est = plu.rcond(); |
| // Verify that the estimate is within a factor of 10 of the truth. |
| VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); |
| } |
| |
| template <typename MatrixType> |
| void lu_verify_assert() { |
| MatrixType tmp; |
| |
| FullPivLU<MatrixType> lu; |
| VERIFY_RAISES_ASSERT(lu.matrixLU()) |
| VERIFY_RAISES_ASSERT(lu.permutationP()) |
| VERIFY_RAISES_ASSERT(lu.permutationQ()) |
| VERIFY_RAISES_ASSERT(lu.kernel()) |
| VERIFY_RAISES_ASSERT(lu.image(tmp)) |
| VERIFY_RAISES_ASSERT(lu.solve(tmp)) |
| VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(lu.determinant()) |
| VERIFY_RAISES_ASSERT(lu.rank()) |
| VERIFY_RAISES_ASSERT(lu.dimensionOfKernel()) |
| VERIFY_RAISES_ASSERT(lu.isInjective()) |
| VERIFY_RAISES_ASSERT(lu.isSurjective()) |
| VERIFY_RAISES_ASSERT(lu.isInvertible()) |
| VERIFY_RAISES_ASSERT(lu.inverse()) |
| |
| PartialPivLU<MatrixType> plu; |
| VERIFY_RAISES_ASSERT(plu.matrixLU()) |
| VERIFY_RAISES_ASSERT(plu.permutationP()) |
| VERIFY_RAISES_ASSERT(plu.solve(tmp)) |
| VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp)) |
| VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp)) |
| VERIFY_RAISES_ASSERT(plu.determinant()) |
| VERIFY_RAISES_ASSERT(plu.inverse()) |
| } |
| |
| EIGEN_DECLARE_TEST(lu) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(lu_non_invertible<Matrix3f>()); |
| CALL_SUBTEST_1(lu_invertible<Matrix3f>()); |
| CALL_SUBTEST_1(lu_verify_assert<Matrix3f>()); |
| CALL_SUBTEST_1(lu_partial_piv<Matrix3f>()); |
| |
| CALL_SUBTEST_2((lu_non_invertible<Matrix<double, 4, 6> >())); |
| CALL_SUBTEST_2((lu_verify_assert<Matrix<double, 4, 6> >())); |
| CALL_SUBTEST_2(lu_partial_piv<Matrix2d>()); |
| CALL_SUBTEST_2(lu_partial_piv<Matrix4d>()); |
| CALL_SUBTEST_2((lu_partial_piv<Matrix<double, 6, 6> >())); |
| |
| CALL_SUBTEST_3(lu_non_invertible<MatrixXf>()); |
| CALL_SUBTEST_3(lu_invertible<MatrixXf>()); |
| CALL_SUBTEST_3(lu_verify_assert<MatrixXf>()); |
| |
| CALL_SUBTEST_4(lu_non_invertible<MatrixXd>()); |
| CALL_SUBTEST_4(lu_invertible<MatrixXd>()); |
| CALL_SUBTEST_4(lu_partial_piv<MatrixXd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))); |
| CALL_SUBTEST_4(lu_verify_assert<MatrixXd>()); |
| |
| CALL_SUBTEST_5(lu_non_invertible<MatrixXcf>()); |
| CALL_SUBTEST_5(lu_invertible<MatrixXcf>()); |
| CALL_SUBTEST_5(lu_verify_assert<MatrixXcf>()); |
| |
| CALL_SUBTEST_6(lu_non_invertible<MatrixXcd>()); |
| CALL_SUBTEST_6(lu_invertible<MatrixXcd>()); |
| CALL_SUBTEST_6(lu_partial_piv<MatrixXcd>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE))); |
| CALL_SUBTEST_6(lu_verify_assert<MatrixXcd>()); |
| |
| CALL_SUBTEST_7((lu_non_invertible<Matrix<float, Dynamic, 16> >())); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_9(PartialPivLU<MatrixXf>(10)); |
| CALL_SUBTEST_9(FullPivLU<MatrixXf>(10, 20);); |
| } |
| } |