| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| |
| #include "main.h" |
| |
| template <int N, typename XprType> |
| void use_n_times(const XprType& xpr) { |
| typename internal::nested_eval<XprType, N>::type mat(xpr); |
| typename XprType::PlainObject res(mat.rows(), mat.cols()); |
| nb_temporaries--; // remove res |
| res.setZero(); |
| for (int i = 0; i < N; ++i) res += mat; |
| } |
| |
| template <int N, typename ReferenceType, typename XprType> |
| bool verify_eval_type(const XprType&, const ReferenceType&) { |
| typedef typename internal::nested_eval<XprType, N>::type EvalType; |
| return internal::is_same<internal::remove_all_t<EvalType>, internal::remove_all_t<ReferenceType>>::value; |
| } |
| |
| template <typename MatrixType> |
| void run_nesting_ops_1(const MatrixType& _m) { |
| typename internal::nested_eval<MatrixType, 2>::type m(_m); |
| |
| // Make really sure that we are in debug mode! |
| VERIFY_RAISES_ASSERT(eigen_assert(false)); |
| |
| // The only intention of these tests is to ensure that this code does |
| // not trigger any asserts or segmentation faults... more to come. |
| VERIFY_IS_APPROX((m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum()); |
| VERIFY_IS_APPROX((m.transpose() * m).diagonal().array().abs().sum(), |
| (m.transpose() * m).diagonal().array().abs().sum()); |
| |
| VERIFY_IS_APPROX((m.transpose() * m).array().abs().sum(), (m.transpose() * m).array().abs().sum()); |
| } |
| |
| template <typename MatrixType> |
| void run_nesting_ops_2(const MatrixType& _m) { |
| typedef typename MatrixType::Scalar Scalar; |
| Index rows = _m.rows(); |
| Index cols = _m.cols(); |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, ColMajor> m2; |
| |
| if ((MatrixType::SizeAtCompileTime == Dynamic)) { |
| VERIFY_EVALUATION_COUNT(use_n_times<1>(m1 + m1 * m1), 1); |
| VERIFY_EVALUATION_COUNT(use_n_times<10>(m1 + m1 * m1), 1); |
| |
| VERIFY_EVALUATION_COUNT(use_n_times<1>(m1.template triangularView<Lower>().solve(m1.col(0))), 1); |
| VERIFY_EVALUATION_COUNT(use_n_times<10>(m1.template triangularView<Lower>().solve(m1.col(0))), 1); |
| |
| VERIFY_EVALUATION_COUNT(use_n_times<1>(Scalar(2) * m1.template triangularView<Lower>().solve(m1.col(0))), |
| 2); // FIXME could be one by applying the scaling in-place on the solve result |
| VERIFY_EVALUATION_COUNT(use_n_times<1>(m1.col(0) + m1.template triangularView<Lower>().solve(m1.col(0))), |
| 2); // FIXME could be one by adding m1.col() inplace |
| VERIFY_EVALUATION_COUNT(use_n_times<10>(m1.col(0) + m1.template triangularView<Lower>().solve(m1.col(0))), 2); |
| } |
| |
| { |
| VERIFY(verify_eval_type<10>(m1, m1)); |
| if (!NumTraits<Scalar>::IsComplex) { |
| VERIFY(verify_eval_type<3>(2 * m1, 2 * m1)); |
| VERIFY(verify_eval_type<4>(2 * m1, m1)); |
| } else { |
| VERIFY(verify_eval_type<2>(2 * m1, 2 * m1)); |
| VERIFY(verify_eval_type<3>(2 * m1, m1)); |
| } |
| VERIFY(verify_eval_type<2>(m1 + m1, m1 + m1)); |
| VERIFY(verify_eval_type<3>(m1 + m1, m1)); |
| VERIFY(verify_eval_type<1>(m1 * m1.transpose(), m2)); |
| VERIFY(verify_eval_type<1>(m1 * (m1 + m1).transpose(), m2)); |
| VERIFY(verify_eval_type<2>(m1 * m1.transpose(), m2)); |
| VERIFY(verify_eval_type<1>(m1 + m1 * m1, m1)); |
| |
| VERIFY(verify_eval_type<1>(m1.template triangularView<Lower>().solve(m1), m1)); |
| VERIFY(verify_eval_type<1>(m1 + m1.template triangularView<Lower>().solve(m1), m1)); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(nesting_ops) { |
| CALL_SUBTEST_1(run_nesting_ops_1(MatrixXf::Random(25, 25))); |
| CALL_SUBTEST_2(run_nesting_ops_1(MatrixXcd::Random(25, 25))); |
| CALL_SUBTEST_3(run_nesting_ops_1(Matrix4f::Random())); |
| CALL_SUBTEST_4(run_nesting_ops_1(Matrix2d::Random())); |
| |
| Index s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); |
| CALL_SUBTEST_1(run_nesting_ops_2(MatrixXf(s, s))); |
| CALL_SUBTEST_2(run_nesting_ops_2(MatrixXcd(s, s))); |
| CALL_SUBTEST_3(run_nesting_ops_2(Matrix4f())); |
| CALL_SUBTEST_4(run_nesting_ops_2(Matrix2d())); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |