| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| #include <algorithm> |
| |
| template <typename MatrixType> |
| void inverse_permutation_4x4() { |
| Vector4i indices(0, 1, 2, 3); |
| for (int i = 0; i < 24; ++i) { |
| MatrixType m = PermutationMatrix<4>(indices); |
| MatrixType inv = m.inverse(); |
| VERIFY_IS_APPROX(m * inv, MatrixType::Identity()); |
| std::next_permutation(indices.data(), indices.data() + 4); |
| } |
| } |
| |
| template <typename MatrixType> |
| void inverse_general_4x4(int repeat) { |
| using std::abs; |
| typedef typename MatrixType::Scalar Scalar; |
| double error_sum = 0., error_max = 0.; |
| for (int i = 0; i < repeat; ++i) { |
| MatrixType m; |
| bool is_invertible; |
| do { |
| m = MatrixType::Random(); |
| is_invertible = Eigen::FullPivLU<MatrixType>(m).isInvertible(); |
| } while (!is_invertible); |
| MatrixType inv = m.inverse(); |
| double error = double((m * inv - MatrixType::Identity()).norm()); |
| error_sum += error; |
| error_max = (std::max)(error_max, error); |
| } |
| std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl; |
| double error_avg = error_sum / repeat; |
| EIGEN_DEBUG_VAR(error_avg); |
| EIGEN_DEBUG_VAR(error_max); |
| // FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong?? |
| // FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21. |
| VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25)); |
| VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0)); |
| |
| { |
| int s = 5; // internal::random<int>(4,10); |
| int i = 0; // internal::random<int>(0,s-4); |
| int j = 0; // internal::random<int>(0,s-4); |
| Matrix<Scalar, 5, 5> mat(s, s); |
| mat.setRandom(); |
| MatrixType submat = mat.template block<4, 4>(i, j); |
| MatrixType mat_inv = mat.template block<4, 4>(i, j).inverse(); |
| VERIFY_IS_APPROX(mat_inv, submat.inverse()); |
| mat.template block<4, 4>(i, j) = submat.inverse(); |
| VERIFY_IS_APPROX(mat_inv, (mat.template block<4, 4>(i, j))); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(prec_inverse_4x4) { |
| CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>())); |
| CALL_SUBTEST_1((inverse_general_4x4<Matrix4f>(200000 * g_repeat))); |
| CALL_SUBTEST_1((inverse_general_4x4<Matrix<float, 4, 4, RowMajor> >(200000 * g_repeat))); |
| |
| CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double, 4, 4, RowMajor> >())); |
| CALL_SUBTEST_2((inverse_general_4x4<Matrix<double, 4, 4, ColMajor> >(200000 * g_repeat))); |
| CALL_SUBTEST_2((inverse_general_4x4<Matrix<double, 4, 4, RowMajor> >(200000 * g_repeat))); |
| |
| CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>())); |
| CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat))); |
| } |