| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "product.h" |
| #include <Eigen/LU> |
| |
| template <typename T> |
| void test_aliasing() { |
| int rows = internal::random<int>(1, 12); |
| int cols = internal::random<int>(1, 12); |
| typedef Matrix<T, Dynamic, Dynamic> MatrixType; |
| typedef Matrix<T, Dynamic, 1> VectorType; |
| VectorType x(cols); |
| x.setRandom(); |
| VectorType z(x); |
| VectorType y(rows); |
| y.setZero(); |
| MatrixType A(rows, cols); |
| A.setRandom(); |
| // CwiseBinaryOp |
| VERIFY_IS_APPROX(x = y + A * x, A * z); // OK because "y + A*x" is marked as "assume-aliasing" |
| x = z; |
| // CwiseUnaryOp |
| VERIFY_IS_APPROX(x = T(1.) * (A * x), |
| A * z); // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression |
| x = z; |
| // VERIFY_IS_APPROX(x = y-A*x, -A*z); // Not OK in 3.3 because x is resized before A*x gets evaluated |
| x = z; |
| } |
| |
| template <int> |
| void product_large_regressions() { |
| { |
| // test a specific issue in DiagonalProduct |
| int N = 1000000; |
| VectorXf v = VectorXf::Ones(N); |
| MatrixXf m = MatrixXf::Ones(N, 3); |
| m = (v + v).asDiagonal() * m; |
| VERIFY_IS_APPROX(m, MatrixXf::Constant(N, 3, 2)); |
| } |
| |
| { |
| // test deferred resizing in Matrix::operator= |
| MatrixXf a = MatrixXf::Random(10, 4), b = MatrixXf::Random(4, 10), c = a; |
| VERIFY_IS_APPROX((a = a * b), (c * b).eval()); |
| } |
| |
| { |
| // check the functions to setup blocking sizes compile and do not segfault |
| // FIXME check they do what they are supposed to do !! |
| std::ptrdiff_t l1 = internal::random<int>(10000, 20000); |
| std::ptrdiff_t l2 = internal::random<int>(100000, 200000); |
| std::ptrdiff_t l3 = internal::random<int>(1000000, 2000000); |
| setCpuCacheSizes(l1, l2, l3); |
| VERIFY(l1 == l1CacheSize()); |
| VERIFY(l2 == l2CacheSize()); |
| std::ptrdiff_t k1 = internal::random<int>(10, 100) * 16; |
| std::ptrdiff_t m1 = internal::random<int>(10, 100) * 16; |
| std::ptrdiff_t n1 = internal::random<int>(10, 100) * 16; |
| // only makes sure it compiles fine |
| internal::computeProductBlockingSizes<float, float, std::ptrdiff_t>(k1, m1, n1, 1); |
| } |
| |
| { |
| // test regression in row-vector by matrix (bad Map type) |
| MatrixXf mat1(10, 32); |
| mat1.setRandom(); |
| MatrixXf mat2(32, 32); |
| mat2.setRandom(); |
| MatrixXf r1 = mat1.row(2) * mat2.transpose(); |
| VERIFY_IS_APPROX(r1, (mat1.row(2) * mat2.transpose()).eval()); |
| |
| MatrixXf r2 = mat1.row(2) * mat2; |
| VERIFY_IS_APPROX(r2, (mat1.row(2) * mat2).eval()); |
| } |
| |
| { |
| Eigen::MatrixXd A(10, 10), B, C; |
| A.setRandom(); |
| C = A; |
| for (int k = 0; k < 79; ++k) C = C * A; |
| B.noalias() = |
| (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * |
| ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))) * |
| (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * |
| ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))); |
| VERIFY_IS_APPROX(B, C); |
| } |
| } |
| |
| template <int> |
| void bug_1622() { |
| typedef Matrix<double, 2, -1, 0, 2, -1> Mat2X; |
| Mat2X x(2, 2); |
| x.setRandom(); |
| MatrixXd y(2, 2); |
| y.setRandom(); |
| const Mat2X K1 = x * y.inverse(); |
| const Matrix2d K2 = x * y.inverse(); |
| VERIFY_IS_APPROX(K1, K2); |
| } |
| |
| EIGEN_DECLARE_TEST(product_large) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(product( |
| MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_2(product( |
| MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_2(product(MatrixXd(internal::random<int>(1, 10), internal::random<int>(1, 10)))); |
| |
| CALL_SUBTEST_3(product( |
| MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_4(product(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_5(product(Matrix<float, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| |
| CALL_SUBTEST_1(test_aliasing<float>()); |
| |
| CALL_SUBTEST_6(bug_1622<1>()); |
| |
| CALL_SUBTEST_7(product(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); |
| CALL_SUBTEST_8(product(Matrix<double, Dynamic, Dynamic, RowMajor>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_9(product(Matrix<std::complex<float>, Dynamic, Dynamic, RowMajor>( |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_10(product(Matrix<std::complex<double>, Dynamic, Dynamic, RowMajor>( |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| CALL_SUBTEST_11(product(Matrix<bfloat16, Dynamic, Dynamic, RowMajor>( |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| |
| CALL_SUBTEST_6(product_large_regressions<0>()); |
| |
| // Regression test for bug 714: |
| #if defined EIGEN_HAS_OPENMP |
| omp_set_dynamic(1); |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_6(product(Matrix<float, Dynamic, Dynamic>(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), |
| internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); |
| } |
| #endif |
| } |