blob: d50f4c4f933ee6a35942c0d0f6b92d8c1ab326f1 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <typename MatrixType>
void syrk(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, RowMajor> RMatrixType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic> Rhs1;
typedef Matrix<Scalar, Dynamic, MatrixType::RowsAtCompileTime> Rhs2;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, Dynamic, RowMajor> Rhs3;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols),
m3 = MatrixType::Random(rows, cols);
RMatrixType rm2 = MatrixType::Random(rows, cols);
Rhs1 rhs1 = Rhs1::Random(internal::random<int>(1, 320), cols);
Rhs1 rhs11 = Rhs1::Random(rhs1.rows(), cols);
Rhs2 rhs2 = Rhs2::Random(rows, internal::random<int>(1, 320));
Rhs2 rhs22 = Rhs2::Random(rows, rhs2.cols());
Rhs3 rhs3 = Rhs3::Random(internal::random<int>(1, 320), rows);
Scalar s1 = internal::random<Scalar>();
Index c = internal::random<Index>(0, cols - 1);
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(rhs2, s1)._expression()),
((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX(((m2.template triangularView<Lower>() += s1 * rhs2 * rhs22.adjoint()).nestedExpression()),
((s1 * rhs2 * rhs22.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs2, s1)._expression(),
(s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * rhs22 * rhs2.adjoint()).nestedExpression(),
(s1 * rhs22 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(), s1)._expression(),
(s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * rhs11.adjoint() * rhs1).nestedExpression(),
(s1 * rhs11.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(), s1)._expression(),
(s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix());
VERIFY_IS_APPROX((m2.template triangularView<Upper>() = s1 * rhs1.adjoint() * rhs11).nestedExpression(),
(s1 * rhs1.adjoint() * rhs11).eval().template triangularView<Upper>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(), s1)._expression(),
(s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(), s1)._expression(),
(s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix());
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c), s1)._expression()),
((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c), s1)._expression()),
((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
rm2.setZero();
VERIFY_IS_APPROX((rm2.template selfadjointView<Upper>().rankUpdate(m1.col(c), s1)._expression()),
((s1 * m1.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template triangularView<Upper>() += s1 * m3.col(c) * m1.col(c).adjoint()).nestedExpression(),
((s1 * m3.col(c) * m1.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
rm2.setZero();
VERIFY_IS_APPROX((rm2.template triangularView<Upper>() += s1 * m1.col(c) * m3.col(c).adjoint()).nestedExpression(),
((s1 * m1.col(c) * m3.col(c).adjoint()).eval().template triangularView<Upper>().toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.col(c).conjugate(), s1)._expression()),
((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint())
.eval()
.template triangularView<Lower>()
.toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.col(c).conjugate(), s1)._expression()),
((s1 * m1.col(c).conjugate() * m1.col(c).conjugate().adjoint())
.eval()
.template triangularView<Upper>()
.toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Lower>().rankUpdate(m1.row(c), s1)._expression()),
((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint())
.eval()
.template triangularView<Lower>()
.toDenseMatrix()));
rm2.setZero();
VERIFY_IS_APPROX((rm2.template selfadjointView<Lower>().rankUpdate(m1.row(c), s1)._expression()),
((s1 * m1.row(c).transpose() * m1.row(c).transpose().adjoint())
.eval()
.template triangularView<Lower>()
.toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template triangularView<Lower>() += s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
.nestedExpression(),
((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
.eval()
.template triangularView<Lower>()
.toDenseMatrix()));
rm2.setZero();
VERIFY_IS_APPROX(
(rm2.template triangularView<Lower>() += s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
.nestedExpression(),
((s1 * m3.row(c).transpose() * m1.row(c).transpose().adjoint())
.eval()
.template triangularView<Lower>()
.toDenseMatrix()));
m2.setZero();
VERIFY_IS_APPROX((m2.template selfadjointView<Upper>().rankUpdate(m1.row(c).adjoint(), s1)._expression()),
((s1 * m1.row(c).adjoint() * m1.row(c).adjoint().adjoint())
.eval()
.template triangularView<Upper>()
.toDenseMatrix()));
// destination with a non-default inner-stride
// see bug 1741
{
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
MatrixX buffer(2 * rows, 2 * cols);
Map<MatrixType, 0, Stride<Dynamic, 2> > map1(buffer.data(), rows, cols, Stride<Dynamic, 2>(2 * rows, 2));
buffer.setZero();
VERIFY_IS_APPROX((map1.template selfadjointView<Lower>().rankUpdate(rhs2, s1)._expression()),
((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix()));
}
}
EIGEN_DECLARE_TEST(product_syrk) {
for (int i = 0; i < g_repeat; i++) {
int s;
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE);
CALL_SUBTEST_1(syrk(MatrixXf(s, s)));
CALL_SUBTEST_2(syrk(MatrixXd(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2);
CALL_SUBTEST_3(syrk(MatrixXcf(s, s)));
CALL_SUBTEST_4(syrk(MatrixXcd(s, s)));
CALL_SUBTEST_5(syrk(Matrix<bfloat16, Dynamic, Dynamic>(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
}
}