blob: f7f6990d91ff0715f65ef747b6fd0fd10ba59284 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/QR>
#include "solverbase.h"
template <typename MatrixType>
void qr(const MatrixType& m) {
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
MatrixType a = MatrixType::Random(rows, cols);
HouseholderQR<MatrixType> qrOfA(a);
MatrixQType q = qrOfA.householderQ();
VERIFY_IS_UNITARY(q);
MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
}
template <typename MatrixType, int Cols2>
void qr_fixedsize() {
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
typedef typename MatrixType::Scalar Scalar;
Matrix<Scalar, Rows, Cols> m1 = Matrix<Scalar, Rows, Cols>::Random();
HouseholderQR<Matrix<Scalar, Rows, Cols> > qr(m1);
Matrix<Scalar, Rows, Cols> r = qr.matrixQR();
// FIXME need better way to construct trapezoid
for (int i = 0; i < Rows; i++)
for (int j = 0; j < Cols; j++)
if (i > j) r(i, j) = Scalar(0);
VERIFY_IS_APPROX(m1, qr.householderQ() * r);
check_solverbase<Matrix<Scalar, Cols, Cols2>, Matrix<Scalar, Rows, Cols2> >(m1, qr, Rows, Cols, Cols2);
}
template <typename MatrixType>
void qr_invertible() {
using std::abs;
using std::log;
using std::max;
using std::pow;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Scalar Scalar;
STATIC_CHECK((internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex, int>::value));
int size = internal::random<int>(10, 50);
MatrixType m1(size, size), m2(size, size), m3(size, size);
m1 = MatrixType::Random(size, size);
if (internal::is_same<RealScalar, float>::value) {
// let's build a matrix more stable to inverse
MatrixType a = MatrixType::Random(size, size * 4);
m1 += a * a.adjoint();
}
HouseholderQR<MatrixType> qr(m1);
check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
// now construct a matrix with prescribed determinant
m1.setZero();
for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>();
Scalar det = m1.diagonal().prod();
RealScalar absdet = abs(det);
m3 = qr.householderQ(); // get a unitary
m1 = m3 * m1 * m3.adjoint();
qr.compute(m1);
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
VERIFY_IS_APPROX(numext::sign(det), qr.signDeterminant());
// This test is tricky if the determinant becomes too small.
// Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size
RealScalar tol =
numext::maxi(RealScalar(pow(0.5, size)), numext::maxi<RealScalar>(abs(absdet), abs(qr.absDeterminant())));
VERIFY_IS_MUCH_SMALLER_THAN(abs(det - qr.determinant()), tol);
VERIFY_IS_MUCH_SMALLER_THAN(abs(absdet - qr.absDeterminant()), tol);
}
template <typename MatrixType>
void qr_verify_assert() {
MatrixType tmp;
HouseholderQR<MatrixType> qr;
VERIFY_RAISES_ASSERT(qr.matrixQR())
VERIFY_RAISES_ASSERT(qr.solve(tmp))
VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
VERIFY_RAISES_ASSERT(qr.householderQ())
VERIFY_RAISES_ASSERT(qr.determinant())
VERIFY_RAISES_ASSERT(qr.absDeterminant())
VERIFY_RAISES_ASSERT(qr.signDeterminant())
}
EIGEN_DECLARE_TEST(qr) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(
qr(MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(qr(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2),
internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2))));
CALL_SUBTEST_3((qr_fixedsize<Matrix<float, 3, 4>, 2>()));
CALL_SUBTEST_4((qr_fixedsize<Matrix<double, 6, 2>, 4>()));
CALL_SUBTEST_5((qr_fixedsize<Matrix<double, 2, 5>, 7>()));
CALL_SUBTEST_11(qr(Matrix<float, 1, 1>()));
}
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(qr_invertible<MatrixXf>());
CALL_SUBTEST_6(qr_invertible<MatrixXd>());
CALL_SUBTEST_7(qr_invertible<MatrixXcf>());
CALL_SUBTEST_8(qr_invertible<MatrixXcd>());
}
CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
// Test problem size constructors
CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
}