| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define TEST_ENABLE_TEMPORARY_TRACKING |
| #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 |
| // ^^ see bug 1449 |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| void matrixRedux(const MatrixType& m) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| |
| // The entries of m1 are uniformly distributed in [-1,1), so m1.prod() is very small. This may lead to test |
| // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. |
| MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; |
| |
| Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows, rows); |
| m2.setRandom(); |
| // Prevent overflows for integer types. |
| if (Eigen::NumTraits<Scalar>::IsInteger) { |
| Scalar kMaxVal = Scalar(10000); |
| m1.array() = m1.array() - kMaxVal * (m1.array() / kMaxVal); |
| m2.array() = m2.array() - kMaxVal * (m2.array() / kMaxVal); |
| } |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); |
| VERIFY_IS_APPROX( |
| MatrixType::Ones(rows, cols).sum(), |
| Scalar(float( |
| rows * |
| cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy |
| Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); |
| for (int j = 0; j < cols; j++) |
| for (int i = 0; i < rows; i++) { |
| s += m1(i, j); |
| p *= m1_for_prod(i, j); |
| minc = (std::min)(numext::real(minc), numext::real(m1(i, j))); |
| maxc = (std::max)(numext::real(maxc), numext::real(m1(i, j))); |
| } |
| const Scalar mean = s / Scalar(RealScalar(rows * cols)); |
| |
| VERIFY_IS_APPROX(m1.sum(), s); |
| VERIFY_IS_APPROX(m1.mean(), mean); |
| VERIFY_IS_APPROX(m1_for_prod.prod(), p); |
| VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); |
| VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); |
| |
| // test that partial reduction works if nested expressions is forced to evaluate early |
| VERIFY_IS_APPROX((m1.matrix() * m1.matrix().transpose()).cwiseProduct(m2.matrix()).rowwise().sum().sum(), |
| (m1.matrix() * m1.matrix().transpose()).eval().cwiseProduct(m2.matrix()).rowwise().sum().sum()); |
| |
| // test slice vectorization assuming assign is ok |
| Index r0 = internal::random<Index>(0, rows - 1); |
| Index c0 = internal::random<Index>(0, cols - 1); |
| Index r1 = internal::random<Index>(r0 + 1, rows) - r0; |
| Index c1 = internal::random<Index>(c0 + 1, cols) - c0; |
| VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).sum(), m1.block(r0, c0, r1, c1).eval().sum()); |
| VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).mean(), m1.block(r0, c0, r1, c1).eval().mean()); |
| VERIFY_IS_APPROX(m1_for_prod.block(r0, c0, r1, c1).prod(), m1_for_prod.block(r0, c0, r1, c1).eval().prod()); |
| VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().minCoeff(), m1.block(r0, c0, r1, c1).real().eval().minCoeff()); |
| VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().maxCoeff(), m1.block(r0, c0, r1, c1).real().eval().maxCoeff()); |
| |
| // regression for bug 1090 |
| const int R1 = MatrixType::RowsAtCompileTime >= 2 ? MatrixType::RowsAtCompileTime / 2 : 6; |
| const int C1 = MatrixType::ColsAtCompileTime >= 2 ? MatrixType::ColsAtCompileTime / 2 : 6; |
| if (R1 <= rows - r0 && C1 <= cols - c0) { |
| VERIFY_IS_APPROX((m1.template block<R1, C1>(r0, c0).sum()), m1.block(r0, c0, R1, C1).sum()); |
| } |
| |
| // test empty objects |
| VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).sum(), Scalar(0)); |
| VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).prod(), Scalar(1)); |
| |
| // test nesting complex expression |
| VERIFY_EVALUATION_COUNT((m1.matrix() * m1.matrix().transpose()).sum(), |
| (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1)); |
| VERIFY_EVALUATION_COUNT(((m1.matrix() * m1.matrix().transpose()) + m2).sum(), |
| (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1)); |
| } |
| |
| template <typename VectorType> |
| void vectorRedux(const VectorType& w) { |
| using std::abs; |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| Index size = w.size(); |
| |
| VectorType v = VectorType::Random(size); |
| VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod |
| |
| for (int i = 1; i < size; i++) { |
| Scalar s(0), p(1); |
| RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); |
| for (int j = 0; j < i; j++) { |
| s += v[j]; |
| p *= v_for_prod[j]; |
| minc = (std::min)(minc, numext::real(v[j])); |
| maxc = (std::max)(maxc, numext::real(v[j])); |
| } |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); |
| VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); |
| VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); |
| } |
| |
| for (int i = 0; i < size - 1; i++) { |
| Scalar s(0), p(1); |
| RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); |
| for (int j = i; j < size; j++) { |
| s += v[j]; |
| p *= v_for_prod[j]; |
| minc = (std::min)(minc, numext::real(v[j])); |
| maxc = (std::max)(maxc, numext::real(v[j])); |
| } |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size - i).sum()), Scalar(1)); |
| VERIFY_IS_APPROX(p, v_for_prod.tail(size - i).prod()); |
| VERIFY_IS_APPROX(minc, v.real().tail(size - i).minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.real().tail(size - i).maxCoeff()); |
| } |
| |
| for (int i = 0; i < size / 2; i++) { |
| Scalar s(0), p(1); |
| RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); |
| for (int j = i; j < size - i; j++) { |
| s += v[j]; |
| p *= v_for_prod[j]; |
| minc = (std::min)(minc, numext::real(v[j])); |
| maxc = (std::max)(maxc, numext::real(v[j])); |
| } |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size - 2 * i).sum()), Scalar(1)); |
| VERIFY_IS_APPROX(p, v_for_prod.segment(i, size - 2 * i).prod()); |
| VERIFY_IS_APPROX(minc, v.real().segment(i, size - 2 * i).minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.real().segment(i, size - 2 * i).maxCoeff()); |
| } |
| |
| // test empty objects |
| VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); |
| VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); |
| VERIFY_RAISES_ASSERT(v.head(0).mean()); |
| VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); |
| VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); |
| } |
| |
| EIGEN_DECLARE_TEST(redux) { |
| // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. |
| int maxsize = (std::min)(100, EIGEN_TEST_MAX_SIZE); |
| TEST_SET_BUT_UNUSED_VARIABLE(maxsize); |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(matrixRedux(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_1(matrixRedux(Array<float, 1, 1>())); |
| CALL_SUBTEST_2(matrixRedux(Matrix2f())); |
| CALL_SUBTEST_2(matrixRedux(Array2f())); |
| CALL_SUBTEST_2(matrixRedux(Array22f())); |
| CALL_SUBTEST_3(matrixRedux(Matrix4d())); |
| CALL_SUBTEST_3(matrixRedux(Array4d())); |
| CALL_SUBTEST_3(matrixRedux(Array44d())); |
| CALL_SUBTEST_4(matrixRedux(MatrixXcf(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_4(matrixRedux(ArrayXXcf(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_5(matrixRedux(MatrixXd(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_5(matrixRedux(ArrayXXd(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_6(matrixRedux(MatrixXi(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_6(matrixRedux(ArrayXXi(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_7(vectorRedux(Vector4f())); |
| CALL_SUBTEST_7(vectorRedux(Array4f())); |
| CALL_SUBTEST_5(vectorRedux(VectorXd(internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_5(vectorRedux(ArrayXd(internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_8(vectorRedux(VectorXf(internal::random<int>(1, maxsize)))); |
| CALL_SUBTEST_8(vectorRedux(ArrayXf(internal::random<int>(1, maxsize)))); |
| } |
| } |