blob: 0c8416f373985dcde97a71d3bd51b7d2e48b33e7 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2021 The Eigen Team
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Core>
#include <Eigen/SparseCore>
#include <vector>
template <typename T>
struct RandomImpl {
static auto Create(Eigen::Index rows, Eigen::Index cols) { return T::Random(rows, cols); }
};
template <typename Scalar, int Options, typename DenseIndex>
struct RandomImpl<Eigen::SparseMatrix<Scalar, Options, DenseIndex>> {
using T = Eigen::SparseMatrix<Scalar, Options, DenseIndex>;
static auto Create(Eigen::Index rows, Eigen::Index cols) {
Eigen::SparseMatrix<Scalar, Options, DenseIndex> M(rows, cols);
M.setZero();
double density = 0.1;
// Reserve some space along each inner dim.
int nnz = static_cast<int>(std::ceil(density * 1.5 * M.innerSize()));
M.reserve(Eigen::VectorXi::Constant(M.outerSize(), nnz));
for (int j = 0; j < M.outerSize(); j++) {
for (int i = 0; i < M.innerSize(); i++) {
bool zero = (Eigen::internal::random<double>(0, 1) > density);
if (!zero) {
M.insertByOuterInner(j, i) = internal::random<Scalar>();
}
}
}
// 50-50 whether to compress or not.
if (Eigen::internal::random<double>(0, 1) >= 0.5) {
M.makeCompressed();
}
return M;
}
};
template <typename Scalar, int Options, typename DenseIndex>
struct RandomImpl<Eigen::SparseVector<Scalar, Options, DenseIndex>> {
using T = Eigen::SparseVector<Scalar, Options, DenseIndex>;
static auto Create(Eigen::Index rows, Eigen::Index cols) {
Eigen::SparseVector<Scalar, Options, DenseIndex> M(rows, cols);
M.setZero();
double density = 0.1;
// Reserve some space along each inner dim.
int nnz = static_cast<int>(density * 1.5 * M.innerSize());
M.reserve(nnz);
for (int i = 0; i < M.innerSize(); i++) {
bool zero = (Eigen::internal::random<double>(0, 1) > density);
if (!zero) {
M.insert(i) = internal::random<Scalar>();
}
}
return M;
}
};
struct MyPodType {
double x;
int y;
float z;
};
// Plain-old-data serialization.
void test_pod_type() {
MyPodType initial = {1.3, 17, 1.9f};
MyPodType clone = {-1, -1, -1};
Eigen::Serializer<MyPodType> serializer;
// Determine required size.
size_t buffer_size = serializer.size(initial);
VERIFY_IS_EQUAL(buffer_size, sizeof(MyPodType));
// Serialize.
std::vector<uint8_t> buffer(buffer_size);
uint8_t* begin = buffer.data();
uint8_t* end = buffer.data() + buffer.size();
uint8_t* dest = serializer.serialize(begin, end, initial);
VERIFY(dest != nullptr);
VERIFY_IS_EQUAL(dest - begin, buffer_size);
// Deserialize.
const uint8_t* src = serializer.deserialize(begin, end, clone);
VERIFY(src != nullptr);
VERIFY_IS_EQUAL(src - begin, buffer_size);
VERIFY_IS_EQUAL(clone.x, initial.x);
VERIFY_IS_EQUAL(clone.y, initial.y);
VERIFY_IS_EQUAL(clone.z, initial.z);
// Serialize with bounds checking errors.
dest = serializer.serialize(begin, end - 1, initial);
VERIFY(dest == nullptr);
dest = serializer.serialize(begin, begin, initial);
VERIFY(dest == nullptr);
dest = serializer.serialize(nullptr, nullptr, initial);
VERIFY(dest == nullptr);
// Deserialize with bounds checking errors.
src = serializer.deserialize(begin, end - 1, clone);
VERIFY(src == nullptr);
src = serializer.deserialize(begin, begin, clone);
VERIFY(src == nullptr);
src = serializer.deserialize(nullptr, nullptr, clone);
VERIFY(src == nullptr);
}
// Matrix, Vector, Array
template <typename T>
void test_eigen_type(const T& type) {
const Index rows = type.rows();
const Index cols = type.cols();
const T initial = RandomImpl<T>::Create(rows, cols);
// Serialize.
Eigen::Serializer<T> serializer;
size_t buffer_size = serializer.size(initial);
std::vector<uint8_t> buffer(buffer_size);
uint8_t* begin = buffer.data();
uint8_t* end = buffer.data() + buffer.size();
uint8_t* dest = serializer.serialize(begin, end, initial);
VERIFY(dest != nullptr);
VERIFY_IS_EQUAL(dest - begin, buffer_size);
// Deserialize.
T clone;
const uint8_t* src = serializer.deserialize(begin, end, clone);
VERIFY(src != nullptr);
VERIFY_IS_EQUAL(src - begin, buffer_size);
VERIFY_IS_CWISE_EQUAL(clone, initial);
// Serialize with bounds checking errors.
dest = serializer.serialize(begin, end - 1, initial);
VERIFY(dest == nullptr);
dest = serializer.serialize(begin, begin, initial);
VERIFY(dest == nullptr);
dest = serializer.serialize(nullptr, nullptr, initial);
VERIFY(dest == nullptr);
// Deserialize with bounds checking errors.
src = serializer.deserialize(begin, end - 1, clone);
VERIFY(src == nullptr);
src = serializer.deserialize(begin, begin, clone);
VERIFY(src == nullptr);
src = serializer.deserialize(nullptr, nullptr, clone);
VERIFY(src == nullptr);
}
// Test a collection of dense types.
template <typename T1, typename T2, typename T3>
void test_dense_types(const T1& type1, const T2& type2, const T3& type3) {
// Make random inputs.
const T1 x1 = T1::Random(type1.rows(), type1.cols());
const T2 x2 = T2::Random(type2.rows(), type2.cols());
const T3 x3 = T3::Random(type3.rows(), type3.cols());
// Allocate buffer and serialize.
size_t buffer_size = Eigen::serialize_size(x1, x2, x3);
std::vector<uint8_t> buffer(buffer_size);
uint8_t* begin = buffer.data();
uint8_t* end = buffer.data() + buffer.size();
uint8_t* dest = Eigen::serialize(begin, end, x1, x2, x3);
VERIFY(dest != nullptr);
// Clone everything.
T1 y1;
T2 y2;
T3 y3;
const uint8_t* src = Eigen::deserialize(begin, end, y1, y2, y3);
VERIFY(src != nullptr);
// Verify they equal.
VERIFY_IS_CWISE_EQUAL(y1, x1);
VERIFY_IS_CWISE_EQUAL(y2, x2);
VERIFY_IS_CWISE_EQUAL(y3, x3);
// Serialize everything with bounds checking errors.
dest = Eigen::serialize(begin, end - 1, y1, y2, y3);
VERIFY(dest == nullptr);
dest = Eigen::serialize(begin, begin, y1, y2, y3);
VERIFY(dest == nullptr);
dest = Eigen::serialize(nullptr, nullptr, y1, y2, y3);
VERIFY(dest == nullptr);
// Deserialize everything with bounds checking errors.
src = Eigen::deserialize(begin, end - 1, y1, y2, y3);
VERIFY(src == nullptr);
src = Eigen::deserialize(begin, begin, y1, y2, y3);
VERIFY(src == nullptr);
src = Eigen::deserialize(nullptr, nullptr, y1, y2, y3);
VERIFY(src == nullptr);
}
EIGEN_DECLARE_TEST(serializer) {
CALL_SUBTEST(test_pod_type());
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST(test_eigen_type(Eigen::Array33f()));
CALL_SUBTEST(test_eigen_type(Eigen::ArrayXd(10)));
CALL_SUBTEST(test_eigen_type(Eigen::Vector3f()));
CALL_SUBTEST(test_eigen_type(Eigen::Matrix4d()));
CALL_SUBTEST(test_eigen_type(Eigen::MatrixXd(15, 17)));
CALL_SUBTEST(test_eigen_type(Eigen::SparseMatrix<float>(13, 12)));
CALL_SUBTEST(test_eigen_type(Eigen::SparseVector<float>(17)));
CALL_SUBTEST(test_dense_types(Eigen::Array33f(), Eigen::ArrayXd(10), Eigen::MatrixXd(15, 17)));
}
}