| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template <typename MatrixType> |
| void matrixVisitor(const MatrixType& p) { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = p.rows(); |
| Index cols = p.cols(); |
| |
| // construct a random matrix where all coefficients are different |
| MatrixType m; |
| m = MatrixType::Random(rows, cols); |
| for (Index i = 0; i < m.size(); i++) |
| for (Index i2 = 0; i2 < i; i2++) |
| while (numext::equal_strict(m(i), m(i2))) // yes, strict equality |
| m(i) = internal::random<Scalar>(); |
| |
| Scalar minc = Scalar(1000), maxc = Scalar(-1000); |
| Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0; |
| for (Index j = 0; j < cols; j++) |
| for (Index i = 0; i < rows; i++) { |
| if (m(i, j) < minc) { |
| minc = m(i, j); |
| minrow = i; |
| mincol = j; |
| } |
| if (m(i, j) > maxc) { |
| maxc = m(i, j); |
| maxrow = i; |
| maxcol = j; |
| } |
| } |
| Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; |
| Scalar eigen_minc, eigen_maxc; |
| eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(minrow == eigen_minrow); |
| VERIFY(maxrow == eigen_maxrow); |
| VERIFY(mincol == eigen_mincol); |
| VERIFY(maxcol == eigen_maxcol); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, m.minCoeff()); |
| VERIFY_IS_APPROX(maxc, m.maxCoeff()); |
| |
| eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol); |
| Index maxrow2 = 0, maxcol2 = 0; |
| eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow2, &maxcol2); |
| VERIFY(maxrow2 == eigen_maxrow); |
| VERIFY(maxcol2 == eigen_maxcol); |
| |
| if (!NumTraits<Scalar>::IsInteger && m.size() > 2) { |
| // Test NaN propagation by replacing an element with NaN. |
| bool stop = false; |
| for (Index j = 0; j < cols && !stop; ++j) { |
| for (Index i = 0; i < rows && !stop; ++i) { |
| if (!(j == mincol && i == minrow) && !(j == maxcol && i == maxrow)) { |
| m(i, j) = NumTraits<Scalar>::quiet_NaN(); |
| stop = true; |
| break; |
| } |
| } |
| } |
| |
| eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(minrow == eigen_minrow); |
| VERIFY(maxrow == eigen_maxrow); |
| VERIFY(mincol == eigen_mincol); |
| VERIFY(maxcol == eigen_maxcol); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>()); |
| VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>()); |
| |
| eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(minrow != eigen_minrow || mincol != eigen_mincol); |
| VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| |
| // Test matrix of all NaNs. |
| m.fill(NumTraits<Scalar>::quiet_NaN()); |
| eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(eigen_minrow == 0); |
| VERIFY(eigen_maxrow == 0); |
| VERIFY(eigen_mincol == 0); |
| VERIFY(eigen_maxcol == 0); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| |
| eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(eigen_minrow == 0); |
| VERIFY(eigen_maxrow == 0); |
| VERIFY(eigen_mincol == 0); |
| VERIFY(eigen_maxcol == 0); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| |
| eigen_minc = m.template minCoeff<PropagateFast>(&eigen_minrow, &eigen_mincol); |
| eigen_maxc = m.template maxCoeff<PropagateFast>(&eigen_maxrow, &eigen_maxcol); |
| VERIFY(eigen_minrow == 0); |
| VERIFY(eigen_maxrow == 0); |
| VERIFY(eigen_mincol == 0); |
| VERIFY(eigen_maxcol == 0); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| } |
| } |
| |
| template <typename VectorType> |
| void vectorVisitor(const VectorType& w) { |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = w.size(); |
| |
| // construct a random vector where all coefficients are different |
| VectorType v; |
| v = VectorType::Random(size); |
| for (Index i = 0; i < size; i++) |
| for (Index i2 = 0; i2 < i; i2++) |
| while (v(i) == v(i2)) // yes, == |
| v(i) = internal::random<Scalar>(); |
| |
| Scalar minc = v(0), maxc = v(0); |
| Index minidx = 0, maxidx = 0; |
| for (Index i = 0; i < size; i++) { |
| if (v(i) < minc) { |
| minc = v(i); |
| minidx = i; |
| } |
| if (v(i) > maxc) { |
| maxc = v(i); |
| maxidx = i; |
| } |
| } |
| Index eigen_minidx, eigen_maxidx; |
| Scalar eigen_minc, eigen_maxc; |
| eigen_minc = v.minCoeff(&eigen_minidx); |
| eigen_maxc = v.maxCoeff(&eigen_maxidx); |
| VERIFY(minidx == eigen_minidx); |
| VERIFY(maxidx == eigen_maxidx); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, v.minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.maxCoeff()); |
| |
| Index idx0 = internal::random<Index>(0, size - 1); |
| Index idx1 = eigen_minidx; |
| Index idx2 = eigen_maxidx; |
| VectorType v1(v), v2(v); |
| v1(idx0) = v1(idx1); |
| v2(idx0) = v2(idx2); |
| v1.minCoeff(&eigen_minidx); |
| v2.maxCoeff(&eigen_maxidx); |
| VERIFY(eigen_minidx == (std::min)(idx0, idx1)); |
| VERIFY(eigen_maxidx == (std::min)(idx0, idx2)); |
| |
| if (!NumTraits<Scalar>::IsInteger && size > 2) { |
| // Test NaN propagation by replacing an element with NaN. |
| for (Index i = 0; i < size; ++i) { |
| if (i != minidx && i != maxidx) { |
| v(i) = NumTraits<Scalar>::quiet_NaN(); |
| break; |
| } |
| } |
| eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx); |
| eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx); |
| VERIFY(minidx == eigen_minidx); |
| VERIFY(maxidx == eigen_maxidx); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>()); |
| VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>()); |
| |
| eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx); |
| eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx); |
| VERIFY(minidx != eigen_minidx); |
| VERIFY(maxidx != eigen_maxidx); |
| VERIFY((numext::isnan)(eigen_minc)); |
| VERIFY((numext::isnan)(eigen_maxc)); |
| } |
| } |
| |
| template <typename Derived, bool Vectorizable> |
| struct TrackedVisitor { |
| using Scalar = typename DenseBase<Derived>::Scalar; |
| static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size; |
| static constexpr bool RowMajor = Derived::IsRowMajor; |
| |
| void init(Scalar v, Index i, Index j) { return this->operator()(v, i, j); } |
| template <typename Packet> |
| void initpacket(Packet p, Index i, Index j) { |
| return this->packet(p, i, j); |
| } |
| void operator()(Scalar v, Index i, Index j) { |
| EIGEN_UNUSED_VARIABLE(v) |
| visited.emplace_back(i, j); |
| scalarOps++; |
| } |
| |
| template <typename Packet> |
| void packet(Packet p, Index i, Index j) { |
| EIGEN_UNUSED_VARIABLE(p) |
| for (int k = 0; k < PacketSize; k++) |
| if (RowMajor) |
| visited.emplace_back(i, j + k); |
| else |
| visited.emplace_back(i + k, j); |
| vectorOps++; |
| } |
| std::vector<std::pair<Index, Index>> visited; |
| Index scalarOps = 0; |
| Index vectorOps = 0; |
| }; |
| |
| namespace Eigen { |
| namespace internal { |
| |
| template <typename T, bool Vectorizable> |
| struct functor_traits<TrackedVisitor<T, Vectorizable>> { |
| enum { PacketAccess = Vectorizable, LinearAccess = false, Cost = 1 }; |
| }; |
| |
| } // namespace internal |
| } // namespace Eigen |
| |
| template <typename Derived, bool Vectorized> |
| void checkOptimalTraversal_impl(const DenseBase<Derived>& mat) { |
| using Scalar = typename DenseBase<Derived>::Scalar; |
| static constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size; |
| static constexpr bool RowMajor = Derived::IsRowMajor; |
| Derived X(mat.rows(), mat.cols()); |
| X.setRandom(); |
| TrackedVisitor<Derived, Vectorized> visitor; |
| visitor.visited.reserve(X.size()); |
| X.visit(visitor); |
| Index count = 0; |
| for (Index j = 0; j < X.outerSize(); ++j) { |
| for (Index i = 0; i < X.innerSize(); ++i) { |
| Index r = RowMajor ? j : i; |
| Index c = RowMajor ? i : j; |
| VERIFY_IS_EQUAL(visitor.visited[count].first, r); |
| VERIFY_IS_EQUAL(visitor.visited[count].second, c); |
| ++count; |
| } |
| } |
| Index vectorOps = Vectorized ? ((X.innerSize() / PacketSize) * X.outerSize()) : 0; |
| Index scalarOps = X.size() - (vectorOps * PacketSize); |
| VERIFY_IS_EQUAL(vectorOps, visitor.vectorOps); |
| VERIFY_IS_EQUAL(scalarOps, visitor.scalarOps); |
| } |
| |
| void checkOptimalTraversal() { |
| using Scalar = float; |
| constexpr int PacketSize = Eigen::internal::packet_traits<Scalar>::size; |
| // use sizes that mix vector and scalar ops |
| constexpr int Rows = 3 * PacketSize + 1; |
| constexpr int Cols = 4 * PacketSize + 1; |
| int rows = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE); |
| int cols = internal::random(PacketSize + 1, EIGEN_TEST_MAX_SIZE); |
| |
| using UnrollColMajor = Matrix<Scalar, Rows, Cols, ColMajor>; |
| using UnrollRowMajor = Matrix<Scalar, Rows, Cols, RowMajor>; |
| using DynamicColMajor = Matrix<Scalar, Dynamic, Dynamic, ColMajor>; |
| using DynamicRowMajor = Matrix<Scalar, Dynamic, Dynamic, RowMajor>; |
| |
| // Scalar-only visitors |
| checkOptimalTraversal_impl<UnrollColMajor, false>(UnrollColMajor(Rows, Cols)); |
| checkOptimalTraversal_impl<UnrollRowMajor, false>(UnrollRowMajor(Rows, Cols)); |
| checkOptimalTraversal_impl<DynamicColMajor, false>(DynamicColMajor(rows, cols)); |
| checkOptimalTraversal_impl<DynamicRowMajor, false>(DynamicRowMajor(rows, cols)); |
| |
| // Vectorized visitors |
| checkOptimalTraversal_impl<UnrollColMajor, true>(UnrollColMajor(Rows, Cols)); |
| checkOptimalTraversal_impl<UnrollRowMajor, true>(UnrollRowMajor(Rows, Cols)); |
| checkOptimalTraversal_impl<DynamicColMajor, true>(DynamicColMajor(rows, cols)); |
| checkOptimalTraversal_impl<DynamicRowMajor, true>(DynamicRowMajor(rows, cols)); |
| } |
| |
| EIGEN_DECLARE_TEST(visitor) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(matrixVisitor(Matrix<float, 1, 1>())); |
| CALL_SUBTEST_2(matrixVisitor(Matrix2f())); |
| CALL_SUBTEST_3(matrixVisitor(Matrix4d())); |
| CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12))); |
| CALL_SUBTEST_5(matrixVisitor(Matrix<double, Dynamic, Dynamic, RowMajor>(20, 20))); |
| CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12))); |
| } |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_7(vectorVisitor(Vector4f())); |
| CALL_SUBTEST_7(vectorVisitor(Matrix<int, 12, 1>())); |
| CALL_SUBTEST_8(vectorVisitor(VectorXd(10))); |
| CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10))); |
| CALL_SUBTEST_10(vectorVisitor(VectorXf(33))); |
| } |
| CALL_SUBTEST_11(checkOptimalTraversal()); |
| } |