blob: 01b44769a2623c126096e40e25f8006ec451628c [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
namespace internal {
template <typename MatrixType_, int UpLo_>
struct traits<LLT<MatrixType_, UpLo_> > : traits<MatrixType_> {
typedef MatrixXpr XprKind;
typedef SolverStorage StorageKind;
typedef int StorageIndex;
enum { Flags = 0 };
};
template <typename MatrixType, int UpLo>
struct LLT_Traits;
} // namespace internal
/** \ingroup Cholesky_Module
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \tparam MatrixType_ the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive
* definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine
* whether a system of equations has a solution.
*
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* \b Performance: for best performance, it is recommended to use a column-major storage format
* with the Lower triangular part (the default), or, equivalently, a row-major storage format
* with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization
* step, and rank-updates can be up to 3 times slower.
*
* This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
*
* Note that during the decomposition, only the lower (or upper, as defined by UpLo_) triangular part of A is
* considered. Therefore, the strict lower part does not have to store correct values.
*
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*/
template <typename MatrixType_, int UpLo_>
class LLT : public SolverBase<LLT<MatrixType_, UpLo_> > {
public:
typedef MatrixType_ MatrixType;
typedef SolverBase<LLT> Base;
friend class SolverBase<LLT>;
EIGEN_GENERIC_PUBLIC_INTERFACE(LLT)
enum { MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
enum { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize) - 1, UpLo = UpLo_ };
typedef internal::LLT_Traits<MatrixType, UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
explicit LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {}
template <typename InputType>
explicit LLT(const EigenBase<InputType>& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) {
compute(matrix.derived());
}
/** \brief Constructs a LLT factorization from a given matrix
*
* This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
* \c MatrixType is a Eigen::Ref.
*
* \sa LLT(const EigenBase&)
*/
template <typename InputType>
explicit LLT(EigenBase<InputType>& matrix) : m_matrix(matrix.derived()), m_isInitialized(false) {
compute(matrix.derived());
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
*/
template <typename Rhs>
inline const Solve<LLT, Rhs> solve(const MatrixBase<Rhs>& b) const;
#endif
template <typename Derived>
void solveInPlace(const MatrixBase<Derived>& bAndX) const;
template <typename InputType>
LLT& compute(const EigenBase<InputType>& matrix);
/** \returns an estimate of the reciprocal condition number of the matrix of
* which \c *this is the Cholesky decomposition.
*/
RealScalar rcond() const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
return internal::rcond_estimate_helper(m_l1_norm, *this);
}
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the matrix.appears not to be positive definite.
*/
ComputationInfo info() const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
/** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix
* is self-adjoint.
*
* This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as:
* \code x = decomposition.adjoint().solve(b) \endcode
*/
const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }
inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
template <typename VectorType>
LLT& rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename RhsType, typename DstType>
void _solve_impl(const RhsType& rhs, DstType& dst) const;
template <bool Conjugate, typename RhsType, typename DstType>
void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const;
#endif
protected:
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
RealScalar m_l1_norm;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template <typename Scalar, int UpLo>
struct llt_inplace;
template <typename MatrixType, typename VectorType>
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec,
const typename MatrixType::RealScalar& sigma) {
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::ColXpr ColXpr;
typedef internal::remove_all_t<ColXpr> ColXprCleaned;
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
typedef Matrix<Scalar, Dynamic, 1> TempVectorType;
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
Index n = mat.cols();
eigen_assert(mat.rows() == n && vec.size() == n);
TempVectorType temp;
if (sigma > 0) {
// This version is based on Givens rotations.
// It is faster than the other one below, but only works for updates,
// i.e., for sigma > 0
temp = sqrt(sigma) * vec;
for (Index i = 0; i < n; ++i) {
JacobiRotation<Scalar> g;
g.makeGivens(mat(i, i), -temp(i), &mat(i, i));
Index rs = n - i - 1;
if (rs > 0) {
ColXprSegment x(mat.col(i).tail(rs));
TempVecSegment y(temp.tail(rs));
apply_rotation_in_the_plane(x, y, g);
}
}
} else {
temp = vec;
RealScalar beta = 1;
for (Index j = 0; j < n; ++j) {
RealScalar Ljj = numext::real(mat.coeff(j, j));
RealScalar dj = numext::abs2(Ljj);
Scalar wj = temp.coeff(j);
RealScalar swj2 = sigma * numext::abs2(wj);
RealScalar gamma = dj * beta + swj2;
RealScalar x = dj + swj2 / beta;
if (x <= RealScalar(0)) return j;
RealScalar nLjj = sqrt(x);
mat.coeffRef(j, j) = nLjj;
beta += swj2 / dj;
// Update the terms of L
Index rs = n - j - 1;
if (rs) {
temp.tail(rs) -= (wj / Ljj) * mat.col(j).tail(rs);
if (!numext::is_exactly_zero(gamma))
mat.col(j).tail(rs) =
(nLjj / Ljj) * mat.col(j).tail(rs) + (nLjj * sigma * numext::conj(wj) / gamma) * temp.tail(rs);
}
}
}
return -1;
}
template <typename Scalar>
struct llt_inplace<Scalar, Lower> {
typedef typename NumTraits<Scalar>::Real RealScalar;
template <typename MatrixType>
static Index unblocked(MatrixType& mat) {
using std::sqrt;
eigen_assert(mat.rows() == mat.cols());
const Index size = mat.rows();
for (Index k = 0; k < size; ++k) {
Index rs = size - k - 1; // remaining size
Block<MatrixType, Dynamic, 1> A21(mat, k + 1, k, rs, 1);
Block<MatrixType, 1, Dynamic> A10(mat, k, 0, 1, k);
Block<MatrixType, Dynamic, Dynamic> A20(mat, k + 1, 0, rs, k);
RealScalar x = numext::real(mat.coeff(k, k));
if (k > 0) x -= A10.squaredNorm();
if (x <= RealScalar(0)) return k;
mat.coeffRef(k, k) = x = sqrt(x);
if (k > 0 && rs > 0) A21.noalias() -= A20 * A10.adjoint();
if (rs > 0) A21 /= x;
}
return -1;
}
template <typename MatrixType>
static Index blocked(MatrixType& m) {
eigen_assert(m.rows() == m.cols());
Index size = m.rows();
if (size < 32) return unblocked(m);
Index blockSize = size / 8;
blockSize = (blockSize / 16) * 16;
blockSize = (std::min)((std::max)(blockSize, Index(8)), Index(128));
for (Index k = 0; k < size; k += blockSize) {
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index bs = (std::min)(blockSize, size - k);
Index rs = size - k - bs;
Block<MatrixType, Dynamic, Dynamic> A11(m, k, k, bs, bs);
Block<MatrixType, Dynamic, Dynamic> A21(m, k + bs, k, rs, bs);
Block<MatrixType, Dynamic, Dynamic> A22(m, k + bs, k + bs, rs, rs);
Index ret;
if ((ret = unblocked(A11)) >= 0) return k + ret;
if (rs > 0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if (rs > 0)
A22.template selfadjointView<Lower>().rankUpdate(A21,
typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
}
return -1;
}
template <typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) {
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
}
};
template <typename Scalar>
struct llt_inplace<Scalar, Upper> {
typedef typename NumTraits<Scalar>::Real RealScalar;
template <typename MatrixType>
static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) {
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::unblocked(matt);
}
template <typename MatrixType>
static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) {
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::blocked(matt);
}
template <typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) {
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
}
};
template <typename MatrixType>
struct LLT_Traits<MatrixType, Lower> {
typedef const TriangularView<const MatrixType, Lower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
static bool inplace_decomposition(MatrixType& m) {
return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m) == -1;
}
};
template <typename MatrixType>
struct LLT_Traits<MatrixType, Upper> {
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef const TriangularView<const MatrixType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
static bool inplace_decomposition(MatrixType& m) {
return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m) == -1;
}
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
* \returns a reference to *this
*
* Example: \include TutorialLinAlgComputeTwice.cpp
* Output: \verbinclude TutorialLinAlgComputeTwice.out
*/
template <typename MatrixType, int UpLo_>
template <typename InputType>
LLT<MatrixType, UpLo_>& LLT<MatrixType, UpLo_>::compute(const EigenBase<InputType>& a) {
eigen_assert(a.rows() == a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
if (!internal::is_same_dense(m_matrix, a.derived())) m_matrix = a.derived();
// Compute matrix L1 norm = max abs column sum.
m_l1_norm = RealScalar(0);
// TODO move this code to SelfAdjointView
for (Index col = 0; col < size; ++col) {
RealScalar abs_col_sum;
if (UpLo_ == Lower)
abs_col_sum =
m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
else
abs_col_sum =
m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
if (abs_col_sum > m_l1_norm) m_l1_norm = abs_col_sum;
}
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
/** Performs a rank one update (or dowdate) of the current decomposition.
* If A = LL^* before the rank one update,
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
* of same dimension.
*/
template <typename MatrixType_, int UpLo_>
template <typename VectorType>
LLT<MatrixType_, UpLo_>& LLT<MatrixType_, UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma) {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
eigen_assert(v.size() == m_matrix.cols());
eigen_assert(m_isInitialized);
if (internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix, v, sigma) >= 0)
m_info = NumericalIssue;
else
m_info = Success;
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename MatrixType_, int UpLo_>
template <typename RhsType, typename DstType>
void LLT<MatrixType_, UpLo_>::_solve_impl(const RhsType& rhs, DstType& dst) const {
_solve_impl_transposed<true>(rhs, dst);
}
template <typename MatrixType_, int UpLo_>
template <bool Conjugate, typename RhsType, typename DstType>
void LLT<MatrixType_, UpLo_>::_solve_impl_transposed(const RhsType& rhs, DstType& dst) const {
dst = rhs;
matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst);
matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst);
}
#endif
/** \internal use x = llt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* This version avoids a copy when the right hand side matrix b is not needed anymore.
*
* \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template <typename MatrixType, int UpLo_>
template <typename Derived>
void LLT<MatrixType, UpLo_>::solveInPlace(const MatrixBase<Derived>& bAndX) const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows() == bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template <typename MatrixType, int UpLo_>
MatrixType LLT<MatrixType, UpLo_>::reconstructedMatrix() const {
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template <typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::llt() const {
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template <typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> SelfAdjointView<MatrixType, UpLo>::llt()
const {
return LLT<PlainObject, UpLo>(m_matrix);
}
} // end namespace Eigen
#endif // EIGEN_LLT_H