blob: 61ad15336612f79bb5c4d65711dd572355bd7aa0 [file] [log] [blame]
#ifndef EIGEN_BENCH_BASICBENCH_H
#define EIGEN_BENCH_BASICBENCH_H
enum { LazyEval, EarlyEval, OmpEval };
template <int Mode, typename MatrixType>
void benchBasic_loop(const MatrixType& I, MatrixType& m, int iterations) __attribute__((noinline));
template <int Mode, typename MatrixType>
void benchBasic_loop(const MatrixType& I, MatrixType& m, int iterations) {
for (int a = 0; a < iterations; a++) {
if (Mode == LazyEval) {
asm("#begin_bench_loop LazyEval");
if (MatrixType::SizeAtCompileTime != Eigen::Dynamic) asm("#fixedsize");
m = (I + 0.00005 * (m + m.lazyProduct(m))).eval();
} else if (Mode == OmpEval) {
asm("#begin_bench_loop OmpEval");
if (MatrixType::SizeAtCompileTime != Eigen::Dynamic) asm("#fixedsize");
m = (I + 0.00005 * (m + m.lazyProduct(m))).eval();
} else {
asm("#begin_bench_loop EarlyEval");
if (MatrixType::SizeAtCompileTime != Eigen::Dynamic) asm("#fixedsize");
m = I + 0.00005 * (m + m * m);
}
asm("#end_bench_loop");
}
}
template <int Mode, typename MatrixType>
double benchBasic(const MatrixType& mat, int size, int tries) __attribute__((noinline));
template <int Mode, typename MatrixType>
double benchBasic(const MatrixType& mat, int iterations, int tries) {
const int rows = mat.rows();
const int cols = mat.cols();
MatrixType I(rows, cols);
MatrixType m(rows, cols);
initMatrix_identity(I);
Eigen::BenchTimer timer;
for (uint t = 0; t < tries; ++t) {
initMatrix_random(m);
timer.start();
benchBasic_loop<Mode>(I, m, iterations);
timer.stop();
cerr << m;
}
return timer.value();
};
#endif // EIGEN_BENCH_BASICBENCH_H