| |
| // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp -o benchEigenSolver && ./benchEigenSolver |
| // options: |
| // -DBENCH_GMM |
| // -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3 |
| // -DEIGEN_DONT_VECTORIZE |
| // -msse2 |
| // -DREPEAT=100 |
| // -DTRIES=10 |
| // -DSCALAR=double |
| |
| #include <iostream> |
| |
| #include <Eigen/Core> |
| #include <Eigen/QR> |
| #include <bench/BenchUtil.h> |
| using namespace Eigen; |
| |
| #ifndef REPEAT |
| #define REPEAT 1000 |
| #endif |
| |
| #ifndef TRIES |
| #define TRIES 4 |
| #endif |
| |
| #ifndef SCALAR |
| #define SCALAR float |
| #endif |
| |
| typedef SCALAR Scalar; |
| |
| template <typename MatrixType> |
| __attribute__((noinline)) void benchEigenSolver(const MatrixType& m) { |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| int stdRepeats = std::max(1, int((REPEAT * 1000) / (rows * rows * sqrt(rows)))); |
| int saRepeats = stdRepeats * 4; |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| |
| MatrixType a = MatrixType::Random(rows, cols); |
| SquareMatrixType covMat = a * a.adjoint(); |
| |
| BenchTimer timerSa, timerStd; |
| |
| Scalar acc = 0; |
| int r = internal::random<int>(0, covMat.rows() - 1); |
| int c = internal::random<int>(0, covMat.cols() - 1); |
| { |
| SelfAdjointEigenSolver<SquareMatrixType> ei(covMat); |
| for (int t = 0; t < TRIES; ++t) { |
| timerSa.start(); |
| for (int k = 0; k < saRepeats; ++k) { |
| ei.compute(covMat); |
| acc += ei.eigenvectors().coeff(r, c); |
| } |
| timerSa.stop(); |
| } |
| } |
| |
| { |
| EigenSolver<SquareMatrixType> ei(covMat); |
| for (int t = 0; t < TRIES; ++t) { |
| timerStd.start(); |
| for (int k = 0; k < stdRepeats; ++k) { |
| ei.compute(covMat); |
| acc += ei.eigenvectors().coeff(r, c); |
| } |
| timerStd.stop(); |
| } |
| } |
| |
| if (MatrixType::RowsAtCompileTime == Dynamic) |
| std::cout << "dyn "; |
| else |
| std::cout << "fixed "; |
| std::cout << covMat.rows() << " \t" << timerSa.value() * REPEAT / saRepeats << "s \t" |
| << timerStd.value() * REPEAT / stdRepeats << "s"; |
| |
| #ifdef BENCH_GMM |
| if (MatrixType::RowsAtCompileTime == Dynamic) { |
| timerSa.reset(); |
| timerStd.reset(); |
| |
| gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(), covMat.cols()); |
| gmm::dense_matrix<Scalar> eigvect(covMat.rows(), covMat.cols()); |
| std::vector<Scalar> eigval(covMat.rows()); |
| eiToGmm(covMat, gmmCovMat); |
| for (int t = 0; t < TRIES; ++t) { |
| timerSa.start(); |
| for (int k = 0; k < saRepeats; ++k) { |
| gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect); |
| acc += eigvect(r, c); |
| } |
| timerSa.stop(); |
| } |
| // the non-selfadjoint solver does not compute the eigen vectors |
| // for (int t=0; t<TRIES; ++t) |
| // { |
| // timerStd.start(); |
| // for (int k=0; k<stdRepeats; ++k) |
| // { |
| // gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect); |
| // acc += eigvect(r,c); |
| // } |
| // timerStd.stop(); |
| // } |
| |
| std::cout << " | \t" << timerSa.value() * REPEAT / saRepeats << "s" |
| << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ " na "; |
| } |
| #endif |
| |
| #ifdef BENCH_GSL |
| if (MatrixType::RowsAtCompileTime == Dynamic) { |
| timerSa.reset(); |
| timerStd.reset(); |
| |
| gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(), covMat.cols()); |
| gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(), covMat.cols()); |
| gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(), covMat.cols()); |
| gsl_vector* eigval = gsl_vector_alloc(covMat.rows()); |
| gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows()); |
| |
| gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(), covMat.cols()); |
| gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows()); |
| gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows()); |
| |
| eiToGsl(covMat, &gslCovMat); |
| for (int t = 0; t < TRIES; ++t) { |
| timerSa.start(); |
| for (int k = 0; k < saRepeats; ++k) { |
| gsl_matrix_memcpy(gslCopy, gslCovMat); |
| gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm); |
| acc += gsl_matrix_get(eigvect, r, c); |
| } |
| timerSa.stop(); |
| } |
| for (int t = 0; t < TRIES; ++t) { |
| timerStd.start(); |
| for (int k = 0; k < stdRepeats; ++k) { |
| gsl_matrix_memcpy(gslCopy, gslCovMat); |
| gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm); |
| acc += GSL_REAL(gsl_matrix_complex_get(eigvectz, r, c)); |
| } |
| timerStd.stop(); |
| } |
| |
| std::cout << " | \t" << timerSa.value() * REPEAT / saRepeats << "s \t" << timerStd.value() * REPEAT / stdRepeats |
| << "s"; |
| |
| gsl_matrix_free(gslCovMat); |
| gsl_vector_free(gslCopy); |
| gsl_matrix_free(eigvect); |
| gsl_vector_free(eigval); |
| gsl_matrix_complex_free(eigvectz); |
| gsl_vector_complex_free(eigvalz); |
| gsl_eigen_symmv_free(eisymm); |
| gsl_eigen_nonsymmv_free(einonsymm); |
| } |
| #endif |
| |
| std::cout << "\n"; |
| |
| // make sure the compiler does not optimize too much |
| if (acc == 123) std::cout << acc; |
| } |
| |
| int main(int argc, char* argv[]) { |
| const int dynsizes[] = {4, 6, 8, 12, 16, 24, 32, 64, 128, 256, 512, 0}; |
| std::cout << "size selfadjoint generic"; |
| #ifdef BENCH_GMM |
| std::cout << " GMM++ "; |
| #endif |
| #ifdef BENCH_GSL |
| std::cout << " GSL (double + ATLAS) "; |
| #endif |
| std::cout << "\n"; |
| for (uint i = 0; dynsizes[i] > 0; ++i) benchEigenSolver(Matrix<Scalar, Dynamic, Dynamic>(dynsizes[i], dynsizes[i])); |
| |
| benchEigenSolver(Matrix<Scalar, 2, 2>()); |
| benchEigenSolver(Matrix<Scalar, 3, 3>()); |
| benchEigenSolver(Matrix<Scalar, 4, 4>()); |
| benchEigenSolver(Matrix<Scalar, 6, 6>()); |
| benchEigenSolver(Matrix<Scalar, 8, 8>()); |
| benchEigenSolver(Matrix<Scalar, 12, 12>()); |
| benchEigenSolver(Matrix<Scalar, 16, 16>()); |
| return 0; |
| } |