| |
| // g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && |
| // ./a.out g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 |
| // -DSIZE=2000 && ./a.out |
| // -DNOGMM -DNOMTL -DCSPARSE |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a |
| |
| #include <typeinfo> |
| |
| #ifndef SIZE |
| #define SIZE 1000000 |
| #endif |
| |
| #ifndef NNZPERCOL |
| #define NNZPERCOL 6 |
| #endif |
| |
| #ifndef REPEAT |
| #define REPEAT 1 |
| #endif |
| |
| #include <algorithm> |
| #include "BenchTimer.h" |
| #include "BenchUtil.h" |
| #include "BenchSparseUtil.h" |
| |
| #ifndef NBTRIES |
| #define NBTRIES 1 |
| #endif |
| |
| #define BENCH(X) \ |
| timer.reset(); \ |
| for (int _j = 0; _j < NBTRIES; ++_j) { \ |
| timer.start(); \ |
| for (int _k = 0; _k < REPEAT; ++_k) { \ |
| X \ |
| } \ |
| timer.stop(); \ |
| } |
| |
| // #ifdef MKL |
| // |
| // #include "mkl_types.h" |
| // #include "mkl_spblas.h" |
| // |
| // template<typename Lhs,typename Rhs,typename Res> |
| // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res) |
| // { |
| // char n = 'N'; |
| // float alpha = 1; |
| // char matdescra[6]; |
| // matdescra[0] = 'G'; |
| // matdescra[1] = 0; |
| // matdescra[2] = 0; |
| // matdescra[3] = 'C'; |
| // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, |
| // lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(), |
| // pntre, b, &ldb, &beta, c, &ldc); |
| // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, |
| // // lhs._valuePtr(), lhs.rows(), DST, dst_stride); |
| // } |
| // |
| // #endif |
| |
| #ifdef CSPARSE |
| cs* cs_sorted_multiply(const cs* a, const cs* b) { |
| // return cs_multiply(a,b); |
| |
| cs* A = cs_transpose(a, 1); |
| cs* B = cs_transpose(b, 1); |
| cs* D = cs_multiply(B, A); /* D = B'*A' */ |
| cs_spfree(A); |
| cs_spfree(B); |
| cs_dropzeros(D); /* drop zeros from D */ |
| cs* C = cs_transpose(D, 1); /* C = D', so that C is sorted */ |
| cs_spfree(D); |
| return C; |
| |
| // cs* A = cs_transpose(a, 1); |
| // cs* C = cs_transpose(A, 1); |
| // return C; |
| } |
| |
| cs* cs_sorted_multiply2(const cs* a, const cs* b) { |
| cs* D = cs_multiply(a, b); |
| cs* E = cs_transpose(D, 1); |
| cs_spfree(D); |
| cs* C = cs_transpose(E, 1); |
| cs_spfree(E); |
| return C; |
| } |
| #endif |
| |
| void bench_sort(); |
| |
| int main(int argc, char* argv[]) { |
| // bench_sort(); |
| |
| int rows = SIZE; |
| int cols = SIZE; |
| float density = DENSITY; |
| |
| EigenSparseMatrix sm1(rows, cols), sm2(rows, cols), sm3(rows, cols), sm4(rows, cols); |
| |
| BenchTimer timer; |
| for (int nnzPerCol = NNZPERCOL; nnzPerCol > 1; nnzPerCol /= 1.1) { |
| sm1.setZero(); |
| sm2.setZero(); |
| fillMatrix2(nnzPerCol, rows, cols, sm1); |
| fillMatrix2(nnzPerCol, rows, cols, sm2); |
| // std::cerr << "filling OK\n"; |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| { |
| std::cout << "Eigen Dense\t" << nnzPerCol << "%\n"; |
| DenseMatrix m1(rows, cols), m2(rows, cols), m3(rows, cols); |
| eiToDense(sm1, m1); |
| eiToDense(sm2, m2); |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) m3 = m1 * m2; |
| timer.stop(); |
| std::cout << " a * b:\t" << timer.value() << endl; |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) m3 = m1.transpose() * m2; |
| timer.stop(); |
| std::cout << " a' * b:\t" << timer.value() << endl; |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) m3 = m1.transpose() * m2.transpose(); |
| timer.stop(); |
| std::cout << " a' * b':\t" << timer.value() << endl; |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) m3 = m1 * m2.transpose(); |
| timer.stop(); |
| std::cout << " a * b':\t" << timer.value() << endl; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| { |
| std::cout << "Eigen sparse\t" << sm1.nonZeros() / (float(sm1.rows()) * float(sm1.cols())) * 100 << "% * " |
| << sm2.nonZeros() / (float(sm2.rows()) * float(sm2.cols())) * 100 << "%\n"; |
| |
| BENCH(sm3 = sm1 * sm2;) |
| std::cout << " a * b:\t" << timer.value() << endl; |
| |
| // BENCH(sm3 = sm1.transpose() * sm2; ) |
| // std::cout << " a' * b:\t" << timer.value() << endl; |
| // // |
| // BENCH(sm3 = sm1.transpose() * sm2.transpose(); ) |
| // std::cout << " a' * b':\t" << timer.value() << endl; |
| // // |
| // BENCH(sm3 = sm1 * sm2.transpose(); ) |
| // std::cout << " a * b' :\t" << timer.value() << endl; |
| |
| // std::cout << "\n"; |
| // |
| // BENCH( sm3._experimentalNewProduct(sm1, sm2); ) |
| // std::cout << " a * b:\t" << timer.value() << endl; |
| // |
| // BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2); ) |
| // std::cout << " a' * b:\t" << timer.value() << endl; |
| // // |
| // BENCH(sm3._experimentalNewProduct(sm1.transpose(),sm2.transpose()); ) |
| // std::cout << " a' * b':\t" << timer.value() << endl; |
| // // |
| // BENCH(sm3._experimentalNewProduct(sm1, sm2.transpose());) |
| // std::cout << " a * b' :\t" << timer.value() << endl; |
| } |
| |
| // eigen dyn-sparse matrices |
| /*{ |
| DynamicSparseMatrix<Scalar> m1(sm1), m2(sm2), m3(sm3); |
| std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/(float(m1.rows())*float(m1.cols()))*100 << "% * " |
| << m2.nonZeros()/(float(m2.rows())*float(m2.cols()))*100 << "%\n"; |
| |
| // timer.reset(); |
| // timer.start(); |
| BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1 * m2;) |
| // timer.stop(); |
| std::cout << " a * b:\t" << timer.value() << endl; |
| // std::cout << sm3 << "\n"; |
| |
| timer.reset(); |
| timer.start(); |
| // std::cerr << "transpose...\n"; |
| // EigenSparseMatrix sm4 = sm1.transpose(); |
| // std::cout << sm4.nonZeros() << " == " << sm1.nonZeros() << "\n"; |
| // exit(1); |
| // std::cerr << "transpose OK\n"; |
| // std::cout << sm1 << "\n\n" << sm1.transpose() << "\n\n" << sm4.transpose() << "\n\n"; |
| BENCH(for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2;) |
| // timer.stop(); |
| std::cout << " a' * b:\t" << timer.value() << endl; |
| |
| // timer.reset(); |
| // timer.start(); |
| BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1.transpose() * m2.transpose(); ) |
| // timer.stop(); |
| std::cout << " a' * b':\t" << timer.value() << endl; |
| |
| // timer.reset(); |
| // timer.start(); |
| BENCH( for (int k=0; k<REPEAT; ++k) m3 = m1 * m2.transpose(); ) |
| // timer.stop(); |
| std::cout << " a * b' :\t" << timer.value() << endl; |
| }*/ |
| |
| // CSparse |
| #ifdef CSPARSE |
| { |
| std::cout << "CSparse \t" << nnzPerCol << "%\n"; |
| cs *m1, *m2, *m3; |
| eiToCSparse(sm1, m1); |
| eiToCSparse(sm2, m2); |
| |
| BENCH({ |
| m3 = cs_sorted_multiply(m1, m2); |
| if (!m3) { |
| std::cerr << "cs_multiply failed\n"; |
| } |
| // cs_print(m3, 0); |
| cs_spfree(m3); |
| }); |
| // timer.stop(); |
| std::cout << " a * b:\t" << timer.value() << endl; |
| |
| // BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } ); |
| // std::cout << " a * b:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| #ifndef NOUBLAS |
| { |
| std::cout << "ublas\t" << nnzPerCol << "%\n"; |
| UBlasSparse m1(rows, cols), m2(rows, cols), m3(rows, cols); |
| eiToUblas(sm1, m1); |
| eiToUblas(sm2, m2); |
| |
| BENCH(boost::numeric::ublas::prod(m1, m2, m3);); |
| std::cout << " a * b:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| // GMM++ |
| #ifndef NOGMM |
| { |
| std::cout << "GMM++ sparse\t" << nnzPerCol << "%\n"; |
| GmmDynSparse gmmT3(rows, cols); |
| GmmSparse m1(rows, cols), m2(rows, cols), m3(rows, cols); |
| eiToGmm(sm1, m1); |
| eiToGmm(sm2, m2); |
| |
| BENCH(gmm::mult(m1, m2, gmmT3);); |
| std::cout << " a * b:\t" << timer.value() << endl; |
| |
| // BENCH(gmm::mult(gmm::transposed(m1), m2, gmmT3);); |
| // std::cout << " a' * b:\t" << timer.value() << endl; |
| // |
| // if (rows<500) |
| // { |
| // BENCH(gmm::mult(gmm::transposed(m1), gmm::transposed(m2), gmmT3);); |
| // std::cout << " a' * b':\t" << timer.value() << endl; |
| // |
| // BENCH(gmm::mult(m1, gmm::transposed(m2), gmmT3);); |
| // std::cout << " a * b':\t" << timer.value() << endl; |
| // } |
| // else |
| // { |
| // std::cout << " a' * b':\t" << "forever" << endl; |
| // std::cout << " a * b':\t" << "forever" << endl; |
| // } |
| } |
| #endif |
| |
| // MTL4 |
| #ifndef NOMTL |
| { |
| std::cout << "MTL4\t" << nnzPerCol << "%\n"; |
| MtlSparse m1(rows, cols), m2(rows, cols), m3(rows, cols); |
| eiToMtl(sm1, m1); |
| eiToMtl(sm2, m2); |
| |
| BENCH(m3 = m1 * m2;); |
| std::cout << " a * b:\t" << timer.value() << endl; |
| |
| // BENCH(m3 = trans(m1) * m2;); |
| // std::cout << " a' * b:\t" << timer.value() << endl; |
| // |
| // BENCH(m3 = trans(m1) * trans(m2);); |
| // std::cout << " a' * b':\t" << timer.value() << endl; |
| // |
| // BENCH(m3 = m1 * trans(m2);); |
| // std::cout << " a * b' :\t" << timer.value() << endl; |
| } |
| #endif |
| |
| std::cout << "\n\n"; |
| } |
| |
| return 0; |
| } |