| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "common.h" |
| #include <Eigen/LU> |
| |
| // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges |
| EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info)) |
| { |
| *info = 0; |
| if(*m<0) *info = -1; |
| else if(*n<0) *info = -2; |
| else if(*lda<std::max(1,*m)) *info = -4; |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6); |
| } |
| |
| if(*m==0 || *n==0) |
| return 0; |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| int nb_transpositions; |
| int ret = int(Eigen::internal::partial_lu_impl<Scalar,ColMajor,int> |
| ::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions)); |
| |
| for(int i=0; i<std::min(*m,*n); ++i) |
| ipiv[i]++; |
| |
| if(ret>=0) |
| *info = ret+1; |
| |
| return 0; |
| } |
| |
| //GETRS solves a system of linear equations |
| // A * X = B or A' * X = B |
| // with a general N-by-N matrix A using the LU factorization computed by GETRF |
| EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info)) |
| { |
| *info = 0; |
| if(OP(*trans)==INVALID) *info = -1; |
| else if(*n<0) *info = -2; |
| else if(*nrhs<0) *info = -3; |
| else if(*lda<std::max(1,*n)) *info = -5; |
| else if(*ldb<std::max(1,*n)) *info = -8; |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6); |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| MatrixType lu(a,*n,*n,*lda); |
| MatrixType B(b,*n,*nrhs,*ldb); |
| |
| for(int i=0; i<*n; ++i) |
| ipiv[i]--; |
| if(OP(*trans)==NOTR) |
| { |
| B = PivotsType(ipiv,*n) * B; |
| lu.triangularView<UnitLower>().solveInPlace(B); |
| lu.triangularView<Upper>().solveInPlace(B); |
| } |
| else if(OP(*trans)==TR) |
| { |
| lu.triangularView<Upper>().transpose().solveInPlace(B); |
| lu.triangularView<UnitLower>().transpose().solveInPlace(B); |
| B = PivotsType(ipiv,*n).transpose() * B; |
| } |
| else if(OP(*trans)==ADJ) |
| { |
| lu.triangularView<Upper>().adjoint().solveInPlace(B); |
| lu.triangularView<UnitLower>().adjoint().solveInPlace(B); |
| B = PivotsType(ipiv,*n).transpose() * B; |
| } |
| for(int i=0; i<*n; ++i) |
| ipiv[i]++; |
| |
| return 0; |
| } |