| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "sparse_solver.h" |
| #include <Eigen/IterativeLinearSolvers> |
| |
| template <typename T, typename I_> |
| void test_bicgstab_T() { |
| BiCGSTAB<SparseMatrix<T, 0, I_>, DiagonalPreconditioner<T> > bicgstab_colmajor_diag; |
| BiCGSTAB<SparseMatrix<T, 0, I_>, IdentityPreconditioner> bicgstab_colmajor_I; |
| BiCGSTAB<SparseMatrix<T, 0, I_>, IncompleteLUT<T, I_> > bicgstab_colmajor_ilut; |
| // BiCGSTAB<SparseMatrix<T>, SSORPreconditioner<T> > bicgstab_colmajor_ssor; |
| |
| bicgstab_colmajor_diag.setTolerance(NumTraits<T>::epsilon() * 4); |
| bicgstab_colmajor_ilut.setTolerance(NumTraits<T>::epsilon() * 4); |
| |
| CALL_SUBTEST(check_sparse_square_solving(bicgstab_colmajor_diag)); |
| // CALL_SUBTEST( check_sparse_square_solving(bicgstab_colmajor_I) ); |
| CALL_SUBTEST(check_sparse_square_solving(bicgstab_colmajor_ilut)); |
| // CALL_SUBTEST( check_sparse_square_solving(bicgstab_colmajor_ssor) ); |
| } |
| |
| // https://gitlab.com/libeigen/eigen/-/issues/2856 |
| void test_2856() { |
| Eigen::MatrixXd D = Eigen::MatrixXd::Identity(14, 14); |
| D(6, 13) = 1; |
| D(13, 12) = 1; |
| using CSRMatrix = Eigen::SparseMatrix<double, Eigen::RowMajor>; |
| CSRMatrix A = D.sparseView(); |
| |
| Eigen::VectorXd b = Eigen::VectorXd::Zero(14); |
| b(12) = -1001; |
| |
| Eigen::BiCGSTAB<CSRMatrix> solver; |
| solver.compute(A); |
| Eigen::VectorXd x = solver.solve(b); |
| Eigen::VectorXd expected = Eigen::VectorXd::Zero(14); |
| expected(6) = -1001; |
| expected(12) = -1001; |
| expected(13) = 1001; |
| VERIFY_IS_EQUAL(x, expected); |
| |
| Eigen::VectorXd residual = b - A * x; |
| VERIFY(residual.isZero()); |
| } |
| |
| // https://gitlab.com/libeigen/eigen/-/issues/2899 |
| void test_2899() { |
| Eigen::MatrixXd A = Eigen::MatrixXd::Zero(4, 4); |
| A(0, 0) = 1; |
| A(1, 0) = -1.0 / 6; |
| A(1, 1) = 2.0 / 3; |
| A(1, 2) = -1.0 / 6; |
| A(1, 3) = -1.0 / 3; |
| A(2, 1) = -1.0 / 3; |
| A(2, 2) = 1; |
| A(2, 3) = -2.0 / 3; |
| A(3, 1) = -1.0 / 3; |
| A(3, 2) = -1.0 / 3; |
| A(3, 3) = 2.0 / 3; |
| Eigen::VectorXd b = Eigen::VectorXd::Zero(4); |
| b(0) = 0; |
| b(1) = 1; |
| b(2) = 1; |
| b(3) = 1; |
| Eigen::BiCGSTAB<Eigen::MatrixXd> solver; |
| solver.compute(A); |
| Eigen::VectorXd x = solver.solve(b); |
| Eigen::VectorXd expected(4); |
| expected << 0, 15, 18, 18; |
| VERIFY_IS_APPROX(x, expected); |
| Eigen::VectorXd residual = b - A * x; |
| VERIFY(residual.isZero()); |
| } |
| |
| EIGEN_DECLARE_TEST(bicgstab) { |
| CALL_SUBTEST_1((test_bicgstab_T<double, int>())); |
| CALL_SUBTEST_2((test_bicgstab_T<std::complex<double>, int>())); |
| CALL_SUBTEST_3((test_bicgstab_T<double, long int>())); |
| CALL_SUBTEST_4(test_2856()); |
| CALL_SUBTEST_5(test_2899()); |
| } |