| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "common.h" |
| |
| /** ZHEMV performs the matrix-vector operation |
| * |
| * y := alpha*A*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are n element vectors and |
| * A is an n by n hermitian matrix. |
| */ |
| EIGEN_BLAS_FUNC(hemv) |
| (const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *px, |
| const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy) { |
| typedef void (*functype)(int, const Scalar *, int, const Scalar *, Scalar *, Scalar); |
| static const functype func[2] = { |
| // array index: UP |
| (internal::selfadjoint_matrix_vector_product<Scalar, int, ColMajor, Upper, false, false>::run), |
| // array index: LO |
| (internal::selfadjoint_matrix_vector_product<Scalar, int, ColMajor, Lower, false, false>::run), |
| }; |
| |
| const Scalar *a = reinterpret_cast<const Scalar *>(pa); |
| const Scalar *x = reinterpret_cast<const Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| Scalar alpha = *reinterpret_cast<const Scalar *>(palpha); |
| Scalar beta = *reinterpret_cast<const Scalar *>(pbeta); |
| |
| // check arguments |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*lda < std::max(1, *n)) |
| info = 5; |
| else if (*incx == 0) |
| info = 7; |
| else if (*incy == 0) |
| info = 10; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HEMV ", &info); |
| |
| if (*n == 0) return; |
| |
| const Scalar *actual_x = get_compact_vector(x, *n, *incx); |
| Scalar *actual_y = get_compact_vector(y, *n, *incy); |
| |
| if (beta != Scalar(1)) { |
| if (beta == Scalar(0)) |
| make_vector(actual_y, *n).setZero(); |
| else |
| make_vector(actual_y, *n) *= beta; |
| } |
| |
| if (alpha != Scalar(0)) { |
| int code = UPLO(*uplo); |
| if (code >= 2 || func[code] == 0) return; |
| |
| func[code](*n, a, *lda, actual_x, actual_y, alpha); |
| } |
| |
| if (actual_x != x) delete[] actual_x; |
| if (actual_y != y) delete[] copy_back(actual_y, y, *n, *incy); |
| } |
| |
| /** ZHBMV performs the matrix-vector operation |
| * |
| * y := alpha*A*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are n element vectors and |
| * A is an n by n hermitian band matrix, with k super-diagonals. |
| */ |
| // EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, |
| // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) |
| // { |
| // return 1; |
| // } |
| |
| /** ZHPMV performs the matrix-vector operation |
| * |
| * y := alpha*A*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are n element vectors and |
| * A is an n by n hermitian matrix, supplied in packed form. |
| */ |
| // EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar |
| // *beta, RealScalar *y, int *incy) |
| // { |
| // return 1; |
| // } |
| |
| /** ZHPR performs the hermitian rank 1 operation |
| * |
| * A := alpha*x*conjg( x' ) + A, |
| * |
| * where alpha is a real scalar, x is an n element vector and A is an |
| * n by n hermitian matrix, supplied in packed form. |
| */ |
| EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) { |
| typedef void (*functype)(int, Scalar *, const Scalar *, RealScalar); |
| static const functype func[2] = { |
| // array index: UP |
| (internal::selfadjoint_packed_rank1_update<Scalar, int, ColMajor, Upper, false, Conj>::run), |
| // array index: LO |
| (internal::selfadjoint_packed_rank1_update<Scalar, int, ColMajor, Lower, false, Conj>::run), |
| }; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *ap = reinterpret_cast<Scalar *>(pap); |
| RealScalar alpha = *palpha; |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*incx == 0) |
| info = 5; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR ", &info); |
| |
| if (alpha == Scalar(0)) return; |
| |
| Scalar *x_cpy = get_compact_vector(x, *n, *incx); |
| |
| int code = UPLO(*uplo); |
| if (code >= 2 || func[code] == 0) return; |
| |
| func[code](*n, ap, x_cpy, alpha); |
| |
| if (x_cpy != x) delete[] x_cpy; |
| } |
| |
| /** ZHPR2 performs the hermitian rank 2 operation |
| * |
| * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
| * |
| * where alpha is a scalar, x and y are n element vectors and A is an |
| * n by n hermitian matrix, supplied in packed form. |
| */ |
| EIGEN_BLAS_FUNC(hpr2) |
| (char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) { |
| typedef void (*functype)(int, Scalar *, const Scalar *, const Scalar *, Scalar); |
| static const functype func[2] = { |
| // array index: UP |
| (internal::packed_rank2_update_selector<Scalar, int, Upper>::run), |
| // array index: LO |
| (internal::packed_rank2_update_selector<Scalar, int, Lower>::run), |
| }; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| Scalar *ap = reinterpret_cast<Scalar *>(pap); |
| Scalar alpha = *reinterpret_cast<Scalar *>(palpha); |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*incx == 0) |
| info = 5; |
| else if (*incy == 0) |
| info = 7; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HPR2 ", &info); |
| |
| if (alpha == Scalar(0)) return; |
| |
| Scalar *x_cpy = get_compact_vector(x, *n, *incx); |
| Scalar *y_cpy = get_compact_vector(y, *n, *incy); |
| |
| int code = UPLO(*uplo); |
| if (code >= 2 || func[code] == 0) return; |
| |
| func[code](*n, ap, x_cpy, y_cpy, alpha); |
| |
| if (x_cpy != x) delete[] x_cpy; |
| if (y_cpy != y) delete[] y_cpy; |
| } |
| |
| /** ZHER performs the hermitian rank 1 operation |
| * |
| * A := alpha*x*conjg( x' ) + A, |
| * |
| * where alpha is a real scalar, x is an n element vector and A is an |
| * n by n hermitian matrix. |
| */ |
| EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) { |
| typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, const Scalar &); |
| static const functype func[2] = { |
| // array index: UP |
| (selfadjoint_rank1_update<Scalar, int, ColMajor, Upper, false, Conj>::run), |
| // array index: LO |
| (selfadjoint_rank1_update<Scalar, int, ColMajor, Lower, false, Conj>::run), |
| }; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *a = reinterpret_cast<Scalar *>(pa); |
| RealScalar alpha = *reinterpret_cast<RealScalar *>(palpha); |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*incx == 0) |
| info = 5; |
| else if (*lda < std::max(1, *n)) |
| info = 7; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HER ", &info); |
| |
| if (alpha == RealScalar(0)) return; |
| |
| Scalar *x_cpy = get_compact_vector(x, *n, *incx); |
| |
| int code = UPLO(*uplo); |
| if (code >= 2 || func[code] == 0) return; |
| |
| func[code](*n, a, *lda, x_cpy, x_cpy, alpha); |
| |
| matrix(a, *n, *n, *lda).diagonal().imag().setZero(); |
| |
| if (x_cpy != x) delete[] x_cpy; |
| } |
| |
| /** ZHER2 performs the hermitian rank 2 operation |
| * |
| * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, |
| * |
| * where alpha is a scalar, x and y are n element vectors and A is an n |
| * by n hermitian matrix. |
| */ |
| EIGEN_BLAS_FUNC(her2) |
| (char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, |
| int *lda) { |
| typedef void (*functype)(int, Scalar *, int, const Scalar *, const Scalar *, Scalar); |
| static const functype func[2] = { |
| // array index: UP |
| (internal::rank2_update_selector<Scalar, int, Upper>::run), |
| // array index: LO |
| (internal::rank2_update_selector<Scalar, int, Lower>::run), |
| }; |
| |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| Scalar *a = reinterpret_cast<Scalar *>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar *>(palpha); |
| |
| int info = 0; |
| if (UPLO(*uplo) == INVALID) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*incx == 0) |
| info = 5; |
| else if (*incy == 0) |
| info = 7; |
| else if (*lda < std::max(1, *n)) |
| info = 9; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "HER2 ", &info); |
| |
| if (alpha == Scalar(0)) return; |
| |
| Scalar *x_cpy = get_compact_vector(x, *n, *incx); |
| Scalar *y_cpy = get_compact_vector(y, *n, *incy); |
| |
| int code = UPLO(*uplo); |
| if (code >= 2 || func[code] == 0) return; |
| |
| func[code](*n, a, *lda, x_cpy, y_cpy, alpha); |
| |
| matrix(a, *n, *n, *lda).diagonal().imag().setZero(); |
| |
| if (x_cpy != x) delete[] x_cpy; |
| if (y_cpy != y) delete[] y_cpy; |
| } |
| |
| /** ZGERU performs the rank 1 operation |
| * |
| * A := alpha*x*y' + A, |
| * |
| * where alpha is a scalar, x is an m element vector, y is an n element |
| * vector and A is an m by n matrix. |
| */ |
| EIGEN_BLAS_FUNC(geru) |
| (int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| Scalar *a = reinterpret_cast<Scalar *>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar *>(palpha); |
| |
| int info = 0; |
| if (*m < 0) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*incx == 0) |
| info = 5; |
| else if (*incy == 0) |
| info = 7; |
| else if (*lda < std::max(1, *m)) |
| info = 9; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "GERU ", &info); |
| |
| if (alpha == Scalar(0)) return; |
| |
| Scalar *x_cpy = get_compact_vector(x, *m, *incx); |
| Scalar *y_cpy = get_compact_vector(y, *n, *incy); |
| |
| internal::general_rank1_update<Scalar, int, ColMajor, false, false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); |
| |
| if (x_cpy != x) delete[] x_cpy; |
| if (y_cpy != y) delete[] y_cpy; |
| } |
| |
| /** ZGERC performs the rank 1 operation |
| * |
| * A := alpha*x*conjg( y' ) + A, |
| * |
| * where alpha is a scalar, x is an m element vector, y is an n element |
| * vector and A is an m by n matrix. |
| */ |
| EIGEN_BLAS_FUNC(gerc) |
| (int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) { |
| Scalar *x = reinterpret_cast<Scalar *>(px); |
| Scalar *y = reinterpret_cast<Scalar *>(py); |
| Scalar *a = reinterpret_cast<Scalar *>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar *>(palpha); |
| |
| int info = 0; |
| if (*m < 0) |
| info = 1; |
| else if (*n < 0) |
| info = 2; |
| else if (*incx == 0) |
| info = 5; |
| else if (*incy == 0) |
| info = 7; |
| else if (*lda < std::max(1, *m)) |
| info = 9; |
| if (info) return xerbla_(SCALAR_SUFFIX_UP "GERC ", &info); |
| |
| if (alpha == Scalar(0)) return; |
| |
| Scalar *x_cpy = get_compact_vector(x, *m, *incx); |
| Scalar *y_cpy = get_compact_vector(y, *n, *incy); |
| |
| internal::general_rank1_update<Scalar, int, ColMajor, false, Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); |
| |
| if (x_cpy != x) delete[] x_cpy; |
| if (y_cpy != y) delete[] y_cpy; |
| } |