| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <numeric> |
| |
| #include "main.h" |
| |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| using Eigen::RowMajor; |
| |
| static void test_1d() |
| { |
| Tensor<float, 1> vec1(6); |
| Tensor<float, 1, RowMajor> vec2(6); |
| |
| vec1(0) = 4.0; vec2(0) = 0.0; |
| vec1(1) = 8.0; vec2(1) = 1.0; |
| vec1(2) = 15.0; vec2(2) = 2.0; |
| vec1(3) = 16.0; vec2(3) = 3.0; |
| vec1(4) = 23.0; vec2(4) = 4.0; |
| vec1(5) = 42.0; vec2(5) = 5.0; |
| |
| float data3[6]; |
| TensorMap<Tensor<float, 1>> vec3(data3, 6); |
| vec3 = vec1.sqrt(); |
| float data4[6]; |
| TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6); |
| vec4 = vec2.square(); |
| float data5[6]; |
| TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6); |
| vec5 = vec2.cube(); |
| |
| VERIFY_IS_APPROX(vec3(0), sqrtf(4.0)); |
| VERIFY_IS_APPROX(vec3(1), sqrtf(8.0)); |
| VERIFY_IS_APPROX(vec3(2), sqrtf(15.0)); |
| VERIFY_IS_APPROX(vec3(3), sqrtf(16.0)); |
| VERIFY_IS_APPROX(vec3(4), sqrtf(23.0)); |
| VERIFY_IS_APPROX(vec3(5), sqrtf(42.0)); |
| |
| VERIFY_IS_APPROX(vec4(0), 0.0f); |
| VERIFY_IS_APPROX(vec4(1), 1.0f); |
| VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f); |
| VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f); |
| VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f); |
| VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f); |
| |
| VERIFY_IS_APPROX(vec5(0), 0.0f); |
| VERIFY_IS_APPROX(vec5(1), 1.0f); |
| VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f); |
| VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f); |
| VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f); |
| VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f); |
| |
| vec3 = vec1 + vec2; |
| VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f); |
| VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f); |
| VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f); |
| VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f); |
| VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f); |
| VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f); |
| } |
| |
| static void test_2d() |
| { |
| float data1[6]; |
| TensorMap<Tensor<float, 2>> mat1(data1, 2, 3); |
| float data2[6]; |
| TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3); |
| |
| mat1(0,0) = 0.0; |
| mat1(0,1) = 1.0; |
| mat1(0,2) = 2.0; |
| mat1(1,0) = 3.0; |
| mat1(1,1) = 4.0; |
| mat1(1,2) = 5.0; |
| |
| mat2(0,0) = -0.0; |
| mat2(0,1) = -1.0; |
| mat2(0,2) = -2.0; |
| mat2(1,0) = -3.0; |
| mat2(1,1) = -4.0; |
| mat2(1,2) = -5.0; |
| |
| Tensor<float, 2> mat3(2,3); |
| Tensor<float, 2, RowMajor> mat4(2,3); |
| mat3 = mat1.abs(); |
| mat4 = mat2.abs(); |
| |
| VERIFY_IS_APPROX(mat3(0,0), 0.0f); |
| VERIFY_IS_APPROX(mat3(0,1), 1.0f); |
| VERIFY_IS_APPROX(mat3(0,2), 2.0f); |
| VERIFY_IS_APPROX(mat3(1,0), 3.0f); |
| VERIFY_IS_APPROX(mat3(1,1), 4.0f); |
| VERIFY_IS_APPROX(mat3(1,2), 5.0f); |
| |
| VERIFY_IS_APPROX(mat4(0,0), 0.0f); |
| VERIFY_IS_APPROX(mat4(0,1), 1.0f); |
| VERIFY_IS_APPROX(mat4(0,2), 2.0f); |
| VERIFY_IS_APPROX(mat4(1,0), 3.0f); |
| VERIFY_IS_APPROX(mat4(1,1), 4.0f); |
| VERIFY_IS_APPROX(mat4(1,2), 5.0f); |
| } |
| |
| static void test_3d() |
| { |
| Tensor<float, 3> mat1(2,3,7); |
| Tensor<float, 3, RowMajor> mat2(2,3,7); |
| |
| float val = 1.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| mat1(i,j,k) = val; |
| mat2(i,j,k) = val; |
| val += 1.0f; |
| } |
| } |
| } |
| |
| Tensor<float, 3> mat3(2,3,7); |
| mat3 = mat1 + mat1; |
| Tensor<float, 3, RowMajor> mat4(2,3,7); |
| mat4 = mat2 * 3.14f; |
| Tensor<float, 3> mat5(2,3,7); |
| mat5 = (mat1 + mat1.constant(1)).inverse().log(); |
| Tensor<float, 3, RowMajor> mat6(2,3,7); |
| mat6 = mat2.pow(0.5f) * 3.14f; |
| Tensor<float, 3> mat7(2,3,7); |
| mat7 = mat1.cwiseMax(mat5 * 2.0f).exp(); |
| Tensor<float, 3, RowMajor> mat8(2,3,7); |
| mat8 = (-mat2).exp() * 3.14f; |
| Tensor<float, 3, RowMajor> mat9(2,3,7); |
| mat9 = mat2 + 3.14f; |
| Tensor<float, 3, RowMajor> mat10(2,3,7); |
| mat10 = mat2 - 3.14f; |
| Tensor<float, 3, RowMajor> mat11(2,3,7); |
| mat11 = mat2 / 3.14f; |
| |
| val = 1.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat3(i,j,k), val + val); |
| VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f); |
| VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/(val + 1))); |
| VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f); |
| VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f))); |
| VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f); |
| VERIFY_IS_APPROX(mat9(i,j,k), val + 3.14f); |
| VERIFY_IS_APPROX(mat10(i,j,k), val - 3.14f); |
| VERIFY_IS_APPROX(mat11(i,j,k), val / 3.14f); |
| val += 1.0f; |
| } |
| } |
| } |
| } |
| |
| static void test_constants() |
| { |
| Tensor<float, 3> mat1(2,3,7); |
| Tensor<float, 3> mat2(2,3,7); |
| Tensor<float, 3> mat3(2,3,7); |
| |
| float val = 1.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| mat1(i,j,k) = val; |
| val += 1.0f; |
| } |
| } |
| } |
| mat2 = mat1.constant(3.14f); |
| mat3 = mat1.cwiseMax(7.3f).exp(); |
| |
| val = 1.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat2(i,j,k), 3.14f); |
| VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f))); |
| val += 1.0f; |
| } |
| } |
| } |
| } |
| |
| static void test_boolean() |
| { |
| const int kSize = 31; |
| Tensor<int, 1> vec(kSize); |
| std::iota(vec.data(), vec.data() + kSize, 0); |
| |
| // Test ||. |
| Tensor<bool, 1> bool1 = (vec < vec.constant(1) || vec > vec.constant(4)).cast<bool>(); |
| for (int i = 0; i < kSize; ++i) { |
| bool expected = i < 1 || i > 4; |
| VERIFY_IS_EQUAL(bool1[i], expected); |
| } |
| |
| // Test &&, including cast of operand vec. |
| Tensor<bool, 1> bool2 = vec.cast<bool>() && (vec < vec.constant(4)).cast<bool>(); |
| for (int i = 0; i < kSize; ++i) { |
| bool expected = bool(i) && i < 4; |
| VERIFY_IS_EQUAL(bool2[i], expected); |
| } |
| |
| // Compilation tests: |
| // Test Tensor<bool> against results of cast or comparison; verifies that |
| // CoeffReturnType is set to match Op return type of bool for Unary and Binary |
| // Ops. |
| Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2; |
| bool3 = (vec < vec.constant(4)).cast<bool>() && bool2; |
| } |
| |
| static void test_functors() |
| { |
| Tensor<float, 3> mat1(2,3,7); |
| Tensor<float, 3> mat2(2,3,7); |
| Tensor<float, 3> mat3(2,3,7); |
| |
| float val = 1.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| mat1(i,j,k) = val; |
| val += 1.0f; |
| } |
| } |
| } |
| mat2 = mat1.inverse().unaryExpr(&asinf); |
| mat3 = mat1.unaryExpr(&tanhf); |
| |
| val = 1.0f; |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k))); |
| VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k))); |
| val += 1.0f; |
| } |
| } |
| } |
| } |
| |
| static void test_type_casting() |
| { |
| Tensor<bool, 3> mat1(2,3,7); |
| Tensor<float, 3> mat2(2,3,7); |
| Tensor<double, 3> mat3(2,3,7); |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| mat3 = mat1.cast<double>(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0); |
| } |
| } |
| } |
| |
| mat3 = mat2.cast<double>(); |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k))); |
| } |
| } |
| } |
| } |
| |
| static void test_select() |
| { |
| using TypedGTOp = internal::scalar_cmp_op<float, float, internal::cmp_GT, true>; |
| |
| Tensor<float, 3> selector(2,3,7); |
| Tensor<float, 3> mat1(2,3,7); |
| Tensor<float, 3> mat2(2,3,7); |
| Tensor<float, 3> result(2,3,7); |
| |
| selector.setRandom(); |
| mat1.setRandom(); |
| mat2.setRandom(); |
| |
| // test select with a boolean condition |
| result = (selector > selector.constant(0.5f)).select(mat1, mat2); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k)); |
| } |
| } |
| } |
| |
| // test select with a typed condition |
| result = selector.binaryExpr(selector.constant(0.5f), TypedGTOp()).select(mat1, mat2); |
| |
| for (int i = 0; i < 2; ++i) { |
| for (int j = 0; j < 3; ++j) { |
| for (int k = 0; k < 7; ++k) { |
| VERIFY_IS_APPROX(result(i, j, k), (selector(i, j, k) > 0.5f) ? mat1(i, j, k) : mat2(i, j, k)); |
| } |
| } |
| } |
| |
| } |
| |
| template <typename Scalar> |
| void test_minmax_nan_propagation_templ() { |
| for (int size = 1; size < 17; ++size) { |
| const Scalar kNaN = std::numeric_limits<Scalar>::quiet_NaN(); |
| const Scalar kInf = std::numeric_limits<Scalar>::infinity(); |
| const Scalar kZero(0); |
| Tensor<Scalar, 1> vec_full_nan(size); |
| Tensor<Scalar, 1> vec_one_nan(size); |
| Tensor<Scalar, 1> vec_zero(size); |
| vec_full_nan.setConstant(kNaN); |
| vec_zero.setZero(); |
| vec_one_nan.setZero(); |
| vec_one_nan(size/2) = kNaN; |
| |
| auto verify_all_nan = [&](const Tensor<Scalar, 1>& v) { |
| for (int i = 0; i < size; ++i) { |
| VERIFY((numext::isnan)(v(i))); |
| } |
| }; |
| |
| auto verify_all_zero = [&](const Tensor<Scalar, 1>& v) { |
| for (int i = 0; i < size; ++i) { |
| VERIFY_IS_EQUAL(v(i), Scalar(0)); |
| } |
| }; |
| |
| // Test NaN propagating max. |
| // max(nan, nan) = nan |
| // max(nan, 0) = nan |
| // max(0, nan) = nan |
| // max(0, 0) = 0 |
| verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(kNaN)); |
| verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(vec_full_nan)); |
| verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(kZero)); |
| verify_all_nan(vec_full_nan.template cwiseMax<PropagateNaN>(vec_zero)); |
| verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(kNaN)); |
| verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(vec_full_nan)); |
| verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(kZero)); |
| verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(vec_zero)); |
| |
| // Test number propagating max. |
| // max(nan, nan) = nan |
| // max(nan, 0) = 0 |
| // max(0, nan) = 0 |
| // max(0, 0) = 0 |
| verify_all_nan(vec_full_nan.template cwiseMax<PropagateNumbers>(kNaN)); |
| verify_all_nan(vec_full_nan.template cwiseMax<PropagateNumbers>(vec_full_nan)); |
| verify_all_zero(vec_full_nan.template cwiseMax<PropagateNumbers>(kZero)); |
| verify_all_zero(vec_full_nan.template cwiseMax<PropagateNumbers>(vec_zero)); |
| verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kNaN)); |
| verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_full_nan)); |
| verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kZero)); |
| verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_zero)); |
| |
| // Test NaN propagating min. |
| // min(nan, nan) = nan |
| // min(nan, 0) = nan |
| // min(0, nan) = nan |
| // min(0, 0) = 0 |
| verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(kNaN)); |
| verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(vec_full_nan)); |
| verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(kZero)); |
| verify_all_nan(vec_full_nan.template cwiseMin<PropagateNaN>(vec_zero)); |
| verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(kNaN)); |
| verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(vec_full_nan)); |
| verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(kZero)); |
| verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(vec_zero)); |
| |
| // Test number propagating min. |
| // min(nan, nan) = nan |
| // min(nan, 0) = 0 |
| // min(0, nan) = 0 |
| // min(0, 0) = 0 |
| verify_all_nan(vec_full_nan.template cwiseMin<PropagateNumbers>(kNaN)); |
| verify_all_nan(vec_full_nan.template cwiseMin<PropagateNumbers>(vec_full_nan)); |
| verify_all_zero(vec_full_nan.template cwiseMin<PropagateNumbers>(kZero)); |
| verify_all_zero(vec_full_nan.template cwiseMin<PropagateNumbers>(vec_zero)); |
| verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kNaN)); |
| verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_full_nan)); |
| verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kZero)); |
| verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_zero)); |
| |
| // Test min and max reduction |
| Tensor<Scalar, 0> val; |
| val = vec_zero.minimum(); |
| VERIFY_IS_EQUAL(val(), kZero); |
| val = vec_zero.template minimum<PropagateNaN>(); |
| VERIFY_IS_EQUAL(val(), kZero); |
| val = vec_zero.template minimum<PropagateNumbers>(); |
| VERIFY_IS_EQUAL(val(), kZero); |
| val = vec_zero.maximum(); |
| VERIFY_IS_EQUAL(val(), kZero); |
| val = vec_zero.template maximum<PropagateNaN>(); |
| VERIFY_IS_EQUAL(val(), kZero); |
| val = vec_zero.template maximum<PropagateNumbers>(); |
| VERIFY_IS_EQUAL(val(), kZero); |
| |
| // Test NaN propagation for tensor of all NaNs. |
| val = vec_full_nan.template minimum<PropagateNaN>(); |
| VERIFY((numext::isnan)(val())); |
| val = vec_full_nan.template minimum<PropagateNumbers>(); |
| VERIFY_IS_EQUAL(val(), kInf); |
| val = vec_full_nan.template maximum<PropagateNaN>(); |
| VERIFY((numext::isnan)(val())); |
| val = vec_full_nan.template maximum<PropagateNumbers>(); |
| VERIFY_IS_EQUAL(val(), -kInf); |
| |
| // Test NaN propagation for tensor with a single NaN. |
| val = vec_one_nan.template minimum<PropagateNaN>(); |
| VERIFY((numext::isnan)(val())); |
| val = vec_one_nan.template minimum<PropagateNumbers>(); |
| VERIFY_IS_EQUAL(val(), (size == 1 ? kInf : kZero)); |
| val = vec_one_nan.template maximum<PropagateNaN>(); |
| VERIFY((numext::isnan)(val())); |
| val = vec_one_nan.template maximum<PropagateNumbers>(); |
| VERIFY_IS_EQUAL(val(), (size == 1 ? -kInf : kZero)); |
| } |
| } |
| |
| static void test_clip() |
| { |
| Tensor<float, 1> vec(6); |
| vec(0) = 4.0; |
| vec(1) = 8.0; |
| vec(2) = 15.0; |
| vec(3) = 16.0; |
| vec(4) = 23.0; |
| vec(5) = 42.0; |
| |
| float kMin = 20; |
| float kMax = 30; |
| |
| Tensor<float, 1> vec_clipped(6); |
| vec_clipped = vec.clip(kMin, kMax); |
| for (int i = 0; i < 6; ++i) { |
| VERIFY_IS_EQUAL(vec_clipped(i), numext::mini(numext::maxi(vec(i), kMin), kMax)); |
| } |
| } |
| |
| static void test_minmax_nan_propagation() |
| { |
| test_minmax_nan_propagation_templ<float>(); |
| test_minmax_nan_propagation_templ<double>(); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_expr) |
| { |
| CALL_SUBTEST(test_1d()); |
| CALL_SUBTEST(test_2d()); |
| CALL_SUBTEST(test_3d()); |
| CALL_SUBTEST(test_constants()); |
| CALL_SUBTEST(test_boolean()); |
| CALL_SUBTEST(test_functors()); |
| CALL_SUBTEST(test_type_casting()); |
| CALL_SUBTEST(test_select()); |
| CALL_SUBTEST(test_clip()); |
| |
| // Nan propagation does currently not work like one would expect from std::max/std::min, |
| // so we disable it for now |
| #if !EIGEN_ARCH_ARM_OR_ARM64 |
| CALL_SUBTEST(test_minmax_nan_propagation()); |
| #endif |
| } |