blob: 4d4f68911ef310dbd298c497c71053a345940df4 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/CXX11/Tensor>
using Eigen::Tensor;
using Eigen::RowMajor;
static void test_0d()
{
Tensor<int, 0> scalar1;
Tensor<int, 0, RowMajor> scalar2;
TensorMap<const Tensor<int, 0> > scalar3(scalar1.data());
TensorMap<const Tensor<int, 0, RowMajor> > scalar4(scalar2.data());
scalar1() = 7;
scalar2() = 13;
VERIFY_IS_EQUAL(scalar1.rank(), 0);
VERIFY_IS_EQUAL(scalar1.size(), 1);
VERIFY_IS_EQUAL(scalar3(), 7);
VERIFY_IS_EQUAL(scalar4(), 13);
}
static void test_1d()
{
Tensor<int, 1> vec1(6);
Tensor<int, 1, RowMajor> vec2(6);
TensorMap<const Tensor<int, 1> > vec3(vec1.data(), 6);
TensorMap<const Tensor<int, 1, RowMajor> > vec4(vec2.data(), 6);
vec1(0) = 4; vec2(0) = 0;
vec1(1) = 8; vec2(1) = 1;
vec1(2) = 15; vec2(2) = 2;
vec1(3) = 16; vec2(3) = 3;
vec1(4) = 23; vec2(4) = 4;
vec1(5) = 42; vec2(5) = 5;
VERIFY_IS_EQUAL(vec1.rank(), 1);
VERIFY_IS_EQUAL(vec1.size(), 6);
VERIFY_IS_EQUAL(vec1.dimension(0), 6);
VERIFY_IS_EQUAL(vec3(0), 4);
VERIFY_IS_EQUAL(vec3(1), 8);
VERIFY_IS_EQUAL(vec3(2), 15);
VERIFY_IS_EQUAL(vec3(3), 16);
VERIFY_IS_EQUAL(vec3(4), 23);
VERIFY_IS_EQUAL(vec3(5), 42);
VERIFY_IS_EQUAL(vec4(0), 0);
VERIFY_IS_EQUAL(vec4(1), 1);
VERIFY_IS_EQUAL(vec4(2), 2);
VERIFY_IS_EQUAL(vec4(3), 3);
VERIFY_IS_EQUAL(vec4(4), 4);
VERIFY_IS_EQUAL(vec4(5), 5);
}
static void test_2d()
{
Tensor<int, 2> mat1(2,3);
Tensor<int, 2, RowMajor> mat2(2,3);
mat1(0,0) = 0;
mat1(0,1) = 1;
mat1(0,2) = 2;
mat1(1,0) = 3;
mat1(1,1) = 4;
mat1(1,2) = 5;
mat2(0,0) = 0;
mat2(0,1) = 1;
mat2(0,2) = 2;
mat2(1,0) = 3;
mat2(1,1) = 4;
mat2(1,2) = 5;
TensorMap<const Tensor<int, 2> > mat3(mat1.data(), 2, 3);
TensorMap<const Tensor<int, 2, RowMajor> > mat4(mat2.data(), 2, 3);
VERIFY_IS_EQUAL(mat3.rank(), 2);
VERIFY_IS_EQUAL(mat3.size(), 6);
VERIFY_IS_EQUAL(mat3.dimension(0), 2);
VERIFY_IS_EQUAL(mat3.dimension(1), 3);
VERIFY_IS_EQUAL(mat4.rank(), 2);
VERIFY_IS_EQUAL(mat4.size(), 6);
VERIFY_IS_EQUAL(mat4.dimension(0), 2);
VERIFY_IS_EQUAL(mat4.dimension(1), 3);
VERIFY_IS_EQUAL(mat3(0,0), 0);
VERIFY_IS_EQUAL(mat3(0,1), 1);
VERIFY_IS_EQUAL(mat3(0,2), 2);
VERIFY_IS_EQUAL(mat3(1,0), 3);
VERIFY_IS_EQUAL(mat3(1,1), 4);
VERIFY_IS_EQUAL(mat3(1,2), 5);
VERIFY_IS_EQUAL(mat4(0,0), 0);
VERIFY_IS_EQUAL(mat4(0,1), 1);
VERIFY_IS_EQUAL(mat4(0,2), 2);
VERIFY_IS_EQUAL(mat4(1,0), 3);
VERIFY_IS_EQUAL(mat4(1,1), 4);
VERIFY_IS_EQUAL(mat4(1,2), 5);
}
static void test_3d()
{
Tensor<int, 3> mat1(2,3,7);
Tensor<int, 3, RowMajor> mat2(2,3,7);
int val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i,j,k) = val;
mat2(i,j,k) = val;
val++;
}
}
}
TensorMap<const Tensor<int, 3> > mat3(mat1.data(), 2, 3, 7);
TensorMap<const Tensor<int, 3, RowMajor> > mat4(mat2.data(), 2, 3, 7);
VERIFY_IS_EQUAL(mat3.rank(), 3);
VERIFY_IS_EQUAL(mat3.size(), 2*3*7);
VERIFY_IS_EQUAL(mat3.dimension(0), 2);
VERIFY_IS_EQUAL(mat3.dimension(1), 3);
VERIFY_IS_EQUAL(mat3.dimension(2), 7);
VERIFY_IS_EQUAL(mat4.rank(), 3);
VERIFY_IS_EQUAL(mat4.size(), 2*3*7);
VERIFY_IS_EQUAL(mat4.dimension(0), 2);
VERIFY_IS_EQUAL(mat4.dimension(1), 3);
VERIFY_IS_EQUAL(mat4.dimension(2), 7);
val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(mat3(i,j,k), val);
VERIFY_IS_EQUAL(mat4(i,j,k), val);
val++;
}
}
}
}
static void test_from_tensor()
{
Tensor<int, 3> mat1(2,3,7);
Tensor<int, 3, RowMajor> mat2(2,3,7);
int val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
mat1(i,j,k) = val;
mat2(i,j,k) = val;
val++;
}
}
}
TensorMap<Tensor<int, 3> > mat3(mat1);
TensorMap<Tensor<int, 3, RowMajor> > mat4(mat2);
VERIFY_IS_EQUAL(mat3.rank(), 3);
VERIFY_IS_EQUAL(mat3.size(), 2*3*7);
VERIFY_IS_EQUAL(mat3.dimension(0), 2);
VERIFY_IS_EQUAL(mat3.dimension(1), 3);
VERIFY_IS_EQUAL(mat3.dimension(2), 7);
VERIFY_IS_EQUAL(mat4.rank(), 3);
VERIFY_IS_EQUAL(mat4.size(), 2*3*7);
VERIFY_IS_EQUAL(mat4.dimension(0), 2);
VERIFY_IS_EQUAL(mat4.dimension(1), 3);
VERIFY_IS_EQUAL(mat4.dimension(2), 7);
val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(mat3(i,j,k), val);
VERIFY_IS_EQUAL(mat4(i,j,k), val);
val++;
}
}
}
TensorFixedSize<int, Sizes<2,3,7> > mat5;
val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
array<ptrdiff_t, 3> coords;
coords[0] = i;
coords[1] = j;
coords[2] = k;
mat5(coords) = val;
val++;
}
}
}
TensorMap<TensorFixedSize<int, Sizes<2,3,7> > > mat6(mat5);
VERIFY_IS_EQUAL(mat6.rank(), 3);
VERIFY_IS_EQUAL(mat6.size(), 2*3*7);
VERIFY_IS_EQUAL(mat6.dimension(0), 2);
VERIFY_IS_EQUAL(mat6.dimension(1), 3);
VERIFY_IS_EQUAL(mat6.dimension(2), 7);
val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
VERIFY_IS_EQUAL(mat6(i,j,k), val);
val++;
}
}
}
}
static int f(const TensorMap<Tensor<int, 3> >& tensor) {
// Size<0> empty;
EIGEN_STATIC_ASSERT((internal::array_size<Sizes<> >::value == 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
EIGEN_STATIC_ASSERT((internal::array_size<DSizes<int, 0> >::value == 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
Tensor<int, 0> result = tensor.sum();
return result();
}
static void test_casting()
{
Tensor<int, 3> tensor(2,3,7);
int val = 0;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 7; ++k) {
tensor(i,j,k) = val;
val++;
}
}
}
TensorMap<Tensor<int, 3> > map(tensor);
int sum1 = f(map);
int sum2 = f(tensor);
VERIFY_IS_EQUAL(sum1, sum2);
VERIFY_IS_EQUAL(sum1, 861);
}
template<typename T>
static const T& add_const(T& value) {
return value;
}
static void test_0d_const_tensor()
{
Tensor<int, 0> scalar1;
Tensor<int, 0, RowMajor> scalar2;
TensorMap<const Tensor<int, 0> > scalar3(add_const(scalar1).data());
TensorMap<const Tensor<int, 0, RowMajor> > scalar4(add_const(scalar2).data());
scalar1() = 7;
scalar2() = 13;
VERIFY_IS_EQUAL(scalar1.rank(), 0);
VERIFY_IS_EQUAL(scalar1.size(), 1);
VERIFY_IS_EQUAL(scalar3(), 7);
VERIFY_IS_EQUAL(scalar4(), 13);
}
static void test_0d_const_tensor_map()
{
Tensor<int, 0> scalar1;
Tensor<int, 0, RowMajor> scalar2;
const TensorMap<Tensor<int, 0> > scalar3(scalar1.data());
const TensorMap<Tensor<int, 0, RowMajor> > scalar4(scalar2.data());
// Although TensorMap is constant, we still can write to the underlying
// storage, because we map over non-constant Tensor.
scalar3() = 7;
scalar4() = 13;
VERIFY_IS_EQUAL(scalar1(), 7);
VERIFY_IS_EQUAL(scalar2(), 13);
// Pointer to the underlying storage is also non-const.
scalar3.data()[0] = 8;
scalar4.data()[0] = 14;
VERIFY_IS_EQUAL(scalar1(), 8);
VERIFY_IS_EQUAL(scalar2(), 14);
}
EIGEN_DECLARE_TEST(cxx11_tensor_map)
{
CALL_SUBTEST(test_0d());
CALL_SUBTEST(test_1d());
CALL_SUBTEST(test_2d());
CALL_SUBTEST(test_3d());
CALL_SUBTEST(test_from_tensor());
CALL_SUBTEST(test_casting());
CALL_SUBTEST(test_0d_const_tensor());
CALL_SUBTEST(test_0d_const_tensor_map());
}