| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 |
| // Mehdi Goli Codeplay Software Ltd. |
| // Ralph Potter Codeplay Software Ltd. |
| // Luke Iwanski Codeplay Software Ltd. |
| // Contact: <eigen@codeplay.com> |
| // Benoit Steiner <benoit.steiner.goog@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| #define EIGEN_TEST_NO_LONGDOUBLE |
| #define EIGEN_TEST_NO_COMPLEX |
| |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t |
| #define EIGEN_USE_SYCL |
| |
| #include "main.h" |
| #include <unsupported/Eigen/CXX11/Tensor> |
| |
| using Eigen::array; |
| using Eigen::SyclDevice; |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_sycl_mem_transfers(const Eigen::SyclDevice &sycl_device) { |
| IndexType sizeDim1 = 5; |
| IndexType sizeDim2 = 5; |
| IndexType sizeDim3 = 1; |
| array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| Tensor<DataType, 3, DataLayout, IndexType> in1(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out1(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out2(tensorRange); |
| Tensor<DataType, 3, DataLayout, IndexType> out3(tensorRange); |
| |
| in1 = in1.random(); |
| |
| DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); |
| DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(out1.size()*sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange); |
| |
| sycl_device.memcpyHostToDevice(gpu_data1, in1.data(),(in1.size())*sizeof(DataType)); |
| sycl_device.memcpyHostToDevice(gpu_data2, in1.data(),(in1.size())*sizeof(DataType)); |
| gpu1.device(sycl_device) = gpu1 * 3.14f; |
| gpu2.device(sycl_device) = gpu2 * 2.7f; |
| sycl_device.memcpyDeviceToHost(out1.data(), gpu_data1,(out1.size())*sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out2.data(), gpu_data1,(out2.size())*sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out3.data(), gpu_data2,(out3.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| |
| for (IndexType i = 0; i < in1.size(); ++i) { |
| // std::cout << "SYCL DATA : " << out1(i) << " vs CPU DATA : " << in1(i) * 3.14f << "\n"; |
| VERIFY_IS_APPROX(out1(i), in1(i) * 3.14f); |
| VERIFY_IS_APPROX(out2(i), in1(i) * 3.14f); |
| VERIFY_IS_APPROX(out3(i), in1(i) * 2.7f); |
| } |
| |
| sycl_device.deallocate(gpu_data1); |
| sycl_device.deallocate(gpu_data2); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_sycl_mem_sync(const Eigen::SyclDevice &sycl_device) { |
| IndexType size = 20; |
| array<IndexType, 1> tensorRange = {{size}}; |
| Tensor<DataType, 1, DataLayout, IndexType> in1(tensorRange); |
| Tensor<DataType, 1, DataLayout, IndexType> in2(tensorRange); |
| Tensor<DataType, 1, DataLayout, IndexType> out(tensorRange); |
| |
| in1 = in1.random(); |
| in2 = in1; |
| |
| DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 1, DataLayout, IndexType>> gpu1(gpu_data, tensorRange); |
| sycl_device.memcpyHostToDevice(gpu_data, in1.data(),(in1.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| in1.setZero(); |
| |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data, out.size()*sizeof(DataType)); |
| sycl_device.synchronize(); |
| |
| for (IndexType i = 0; i < in1.size(); ++i) { |
| VERIFY_IS_APPROX(out(i), in2(i)); |
| } |
| |
| sycl_device.deallocate(gpu_data); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_sycl_mem_sync_offsets(const Eigen::SyclDevice &sycl_device) { |
| using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>; |
| IndexType full_size = 32; |
| IndexType half_size = full_size / 2; |
| array<IndexType, 1> tensorRange = {{full_size}}; |
| tensor_type in1(tensorRange); |
| tensor_type out(tensorRange); |
| |
| DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType))); |
| TensorMap<tensor_type> gpu1(gpu_data, tensorRange); |
| |
| in1 = in1.random(); |
| // Copy all data to device, then permute on copy back to host |
| sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data + half_size, half_size * sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out.data() + half_size, gpu_data, half_size * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < half_size; ++i) { |
| VERIFY_IS_APPROX(out(i), in1(i + half_size)); |
| VERIFY_IS_APPROX(out(i + half_size), in1(i)); |
| } |
| |
| in1 = in1.random(); |
| out.setZero(); |
| // Permute copies to device, then copy all back to host |
| sycl_device.memcpyHostToDevice(gpu_data + half_size, in1.data(), half_size * sizeof(DataType)); |
| sycl_device.memcpyHostToDevice(gpu_data, in1.data() + half_size, half_size * sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < half_size; ++i) { |
| VERIFY_IS_APPROX(out(i), in1(i + half_size)); |
| VERIFY_IS_APPROX(out(i + half_size), in1(i)); |
| } |
| |
| in1 = in1.random(); |
| out.setZero(); |
| DataType* gpu_data_out = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType))); |
| TensorMap<tensor_type> gpu2(gpu_data_out, tensorRange); |
| // Copy all to device, permute copies on device, then copy all back to host |
| sycl_device.memcpyHostToDevice(gpu_data, in1.data(), full_size * sizeof(DataType)); |
| sycl_device.memcpy(gpu_data_out + half_size, gpu_data, half_size * sizeof(DataType)); |
| sycl_device.memcpy(gpu_data_out, gpu_data + half_size, half_size * sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data_out, full_size * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < half_size; ++i) { |
| VERIFY_IS_APPROX(out(i), in1(i + half_size)); |
| VERIFY_IS_APPROX(out(i + half_size), in1(i)); |
| } |
| |
| sycl_device.deallocate(gpu_data_out); |
| sycl_device.deallocate(gpu_data); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_sycl_memset_offsets(const Eigen::SyclDevice &sycl_device) { |
| using tensor_type = Tensor<DataType, 1, DataLayout, IndexType>; |
| IndexType full_size = 32; |
| IndexType half_size = full_size / 2; |
| array<IndexType, 1> tensorRange = {{full_size}}; |
| tensor_type cpu_out(tensorRange); |
| tensor_type out(tensorRange); |
| |
| cpu_out.setZero(); |
| |
| std::memset(cpu_out.data(), 0, half_size * sizeof(DataType)); |
| std::memset(cpu_out.data() + half_size, 1, half_size * sizeof(DataType)); |
| |
| DataType* gpu_data = static_cast<DataType*>(sycl_device.allocate(full_size * sizeof(DataType))); |
| TensorMap<tensor_type> gpu1(gpu_data, tensorRange); |
| |
| sycl_device.memset(gpu_data, 0, half_size * sizeof(DataType)); |
| sycl_device.memset(gpu_data + half_size, 1, half_size * sizeof(DataType)); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_data, full_size * sizeof(DataType)); |
| |
| for (IndexType i = 0; i < full_size; ++i) { |
| VERIFY_IS_APPROX(out(i), cpu_out(i)); |
| } |
| |
| sycl_device.deallocate(gpu_data); |
| } |
| |
| template <typename DataType, int DataLayout, typename IndexType> |
| void test_sycl_computations(const Eigen::SyclDevice &sycl_device) { |
| |
| IndexType sizeDim1 = 100; |
| IndexType sizeDim2 = 10; |
| IndexType sizeDim3 = 20; |
| array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; |
| Tensor<DataType, 3,DataLayout, IndexType> in1(tensorRange); |
| Tensor<DataType, 3,DataLayout, IndexType> in2(tensorRange); |
| Tensor<DataType, 3,DataLayout, IndexType> in3(tensorRange); |
| Tensor<DataType, 3,DataLayout, IndexType> out(tensorRange); |
| |
| in2 = in2.random(); |
| in3 = in3.random(); |
| |
| DataType * gpu_in1_data = static_cast<DataType*>(sycl_device.allocate(in1.size()*sizeof(DataType))); |
| DataType * gpu_in2_data = static_cast<DataType*>(sycl_device.allocate(in2.size()*sizeof(DataType))); |
| DataType * gpu_in3_data = static_cast<DataType*>(sycl_device.allocate(in3.size()*sizeof(DataType))); |
| DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.size()*sizeof(DataType))); |
| |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in1(gpu_in1_data, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in2(gpu_in2_data, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_in3(gpu_in3_data, tensorRange); |
| TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange); |
| |
| /// a=1.2f |
| gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f); |
| sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(in1(i,j,k), 1.2f); |
| } |
| } |
| } |
| printf("a=1.2f Test passed\n"); |
| |
| /// a=b*1.2f |
| gpu_out.device(sycl_device) = gpu_in1 * 1.2f; |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i,j,k), |
| in1(i,j,k) * 1.2f); |
| } |
| } |
| } |
| printf("a=b*1.2f Test Passed\n"); |
| |
| /// c=a*b |
| sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.size())*sizeof(DataType)); |
| gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i,j,k), |
| in1(i,j,k) * |
| in2(i,j,k)); |
| } |
| } |
| } |
| printf("c=a*b Test Passed\n"); |
| |
| /// c=a+b |
| gpu_out.device(sycl_device) = gpu_in1 + gpu_in2; |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i,j,k), |
| in1(i,j,k) + |
| in2(i,j,k)); |
| } |
| } |
| } |
| printf("c=a+b Test Passed\n"); |
| |
| /// c=a*a |
| gpu_out.device(sycl_device) = gpu_in1 * gpu_in1; |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i,j,k), |
| in1(i,j,k) * |
| in1(i,j,k)); |
| } |
| } |
| } |
| printf("c= a*a Test Passed\n"); |
| |
| //a*3.14f + b*2.7f |
| gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f); |
| sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i,j,k), |
| in1(i,j,k) * 3.14f |
| + in2(i,j,k) * 2.7f); |
| } |
| } |
| } |
| printf("a*3.14f + b*2.7f Test Passed\n"); |
| |
| ///d= (a>0.5? b:c) |
| sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.size())*sizeof(DataType)); |
| gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.size())*sizeof(DataType)); |
| sycl_device.synchronize(); |
| for (IndexType i = 0; i < sizeDim1; ++i) { |
| for (IndexType j = 0; j < sizeDim2; ++j) { |
| for (IndexType k = 0; k < sizeDim3; ++k) { |
| VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f) |
| ? in2(i, j, k) |
| : in3(i, j, k)); |
| } |
| } |
| } |
| printf("d= (a>0.5? b:c) Test Passed\n"); |
| sycl_device.deallocate(gpu_in1_data); |
| sycl_device.deallocate(gpu_in2_data); |
| sycl_device.deallocate(gpu_in3_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| template<typename Scalar1, typename Scalar2, int DataLayout, typename IndexType> |
| static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){ |
| IndexType size = 20; |
| array<IndexType, 1> tensorRange = {{size}}; |
| Tensor<Scalar1, 1, DataLayout, IndexType> in(tensorRange); |
| Tensor<Scalar2, 1, DataLayout, IndexType> out(tensorRange); |
| Tensor<Scalar2, 1, DataLayout, IndexType> out_host(tensorRange); |
| |
| in = in.random(); |
| |
| Scalar1* gpu_in_data = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1))); |
| Scalar2 * gpu_out_data = static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2))); |
| |
| TensorMap<Tensor<Scalar1, 1, DataLayout, IndexType>> gpu_in(gpu_in_data, tensorRange); |
| TensorMap<Tensor<Scalar2, 1, DataLayout, IndexType>> gpu_out(gpu_out_data, tensorRange); |
| sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1)); |
| gpu_out.device(sycl_device) = gpu_in. template cast<Scalar2>(); |
| sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, out.size()*sizeof(Scalar2)); |
| out_host = in. template cast<Scalar2>(); |
| for(IndexType i=0; i< size; i++) |
| { |
| VERIFY_IS_APPROX(out(i), out_host(i)); |
| } |
| printf("cast Test Passed\n"); |
| sycl_device.deallocate(gpu_in_data); |
| sycl_device.deallocate(gpu_out_data); |
| } |
| template<typename DataType, typename dev_Selector> void sycl_computing_test_per_device(dev_Selector s){ |
| QueueInterface queueInterface(s); |
| auto sycl_device = Eigen::SyclDevice(&queueInterface); |
| test_sycl_mem_transfers<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_computations<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_mem_sync<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_mem_sync_offsets<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_memset_offsets<DataType, RowMajor, int64_t>(sycl_device); |
| test_sycl_mem_transfers<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_computations<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_mem_sync<DataType, ColMajor, int64_t>(sycl_device); |
| test_sycl_cast<DataType, int, RowMajor, int64_t>(sycl_device); |
| test_sycl_cast<DataType, int, ColMajor, int64_t>(sycl_device); |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_sycl) { |
| for (const auto& device :Eigen::get_sycl_supported_devices()) { |
| CALL_SUBTEST(sycl_computing_test_per_device<float>(device)); |
| } |
| } |