| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_TRANSFORM_H |
| #define EIGEN_TRANSFORM_H |
| |
| /** Represents some traits of a transformation */ |
| enum TransformTraits { |
| Isometry, ///< the transformation is a concatenation of translations and rotations |
| Affine, ///< the transformation is affine (linear transformation + translation) |
| Projective ///< the transformation might not be affine |
| }; |
| |
| // Note that we have to pass Dim and HDim because it is not allowed to use a template |
| // parameter to define a template specialization. To be more precise, in the following |
| // specializations, it is not allowed to use Dim+1 instead of HDim. |
| template< typename Other, |
| int Dim, |
| int HDim, |
| int OtherRows=Other::RowsAtCompileTime, |
| int OtherCols=Other::ColsAtCompileTime> |
| struct ei_transform_product_impl; |
| |
| /** \geometry_module \ingroup GeometryModule |
| * |
| * \class Transform |
| * |
| * \brief Represents an homogeneous transformation in a N dimensional space |
| * |
| * \param _Scalar the scalar type, i.e., the type of the coefficients |
| * \param _Dim the dimension of the space |
| * |
| * The homography is internally represented and stored as a (Dim+1)^2 matrix which |
| * is available through the matrix() method. |
| * |
| * Conversion methods from/to Qt's QMatrix and QTransform are available if the |
| * preprocessor token EIGEN_QT_SUPPORT is defined. |
| * |
| * \sa class Matrix, class Quaternion |
| */ |
| template<typename _Scalar, int _Dim> |
| class Transform |
| { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) |
| enum { |
| Dim = _Dim, ///< space dimension in which the transformation holds |
| HDim = _Dim+1 ///< size of a respective homogeneous vector |
| }; |
| /** the scalar type of the coefficients */ |
| typedef _Scalar Scalar; |
| /** type of the matrix used to represent the transformation */ |
| typedef Matrix<Scalar,HDim,HDim> MatrixType; |
| /** type of the matrix used to represent the linear part of the transformation */ |
| typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; |
| /** type of read/write reference to the linear part of the transformation */ |
| typedef Block<MatrixType,Dim,Dim> LinearPart; |
| /** type of a vector */ |
| typedef Matrix<Scalar,Dim,1> VectorType; |
| /** type of a read/write reference to the translation part of the rotation */ |
| typedef Block<MatrixType,Dim,1> TranslationPart; |
| /** corresponding translation type */ |
| typedef Translation<Scalar,Dim> TranslationType; |
| /** corresponding scaling transformation type */ |
| typedef Scaling<Scalar,Dim> ScalingType; |
| |
| protected: |
| |
| MatrixType m_matrix; |
| |
| public: |
| |
| /** Default constructor without initialization of the coefficients. */ |
| inline Transform() { } |
| |
| inline Transform(ei_constructor_without_unaligned_array_assert) |
| : m_matrix(ei_constructor_without_unaligned_array_assert()) {} |
| |
| inline Transform(const Transform& other) |
| { |
| m_matrix = other.m_matrix; |
| } |
| |
| inline explicit Transform(const TranslationType& t) { *this = t; } |
| inline explicit Transform(const ScalingType& s) { *this = s; } |
| template<typename Derived> |
| inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; } |
| |
| inline Transform& operator=(const Transform& other) |
| { m_matrix = other.m_matrix; return *this; } |
| |
| template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value |
| struct construct_from_matrix |
| { |
| static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) |
| { |
| transform->matrix() = other; |
| } |
| }; |
| |
| template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true> |
| { |
| static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) |
| { |
| transform->linear() = other; |
| transform->translation().setZero(); |
| transform->matrix()(Dim,Dim) = Scalar(1); |
| transform->matrix().template block<1,Dim>(Dim,0).setZero(); |
| } |
| }; |
| |
| /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ |
| template<typename OtherDerived> |
| inline explicit Transform(const MatrixBase<OtherDerived>& other) |
| { |
| construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other); |
| } |
| |
| /** Set \c *this from a (Dim+1)^2 matrix. */ |
| template<typename OtherDerived> |
| inline Transform& operator=(const MatrixBase<OtherDerived>& other) |
| { m_matrix = other; return *this; } |
| |
| #ifdef EIGEN_QT_SUPPORT |
| inline Transform(const QMatrix& other); |
| inline Transform& operator=(const QMatrix& other); |
| inline QMatrix toQMatrix(void) const; |
| inline Transform(const QTransform& other); |
| inline Transform& operator=(const QTransform& other); |
| inline QTransform toQTransform(void) const; |
| #endif |
| |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operaror(int,int) const */ |
| inline Scalar operator() (int row, int col) const { return m_matrix(row,col); } |
| /** shortcut for m_matrix(row,col); |
| * \sa MatrixBase::operaror(int,int) */ |
| inline Scalar& operator() (int row, int col) { return m_matrix(row,col); } |
| |
| /** \returns a read-only expression of the transformation matrix */ |
| inline const MatrixType& matrix() const { return m_matrix; } |
| /** \returns a writable expression of the transformation matrix */ |
| inline MatrixType& matrix() { return m_matrix; } |
| |
| /** \returns a read-only expression of the linear (linear) part of the transformation */ |
| inline const LinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); } |
| /** \returns a writable expression of the linear (linear) part of the transformation */ |
| inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); } |
| |
| /** \returns a read-only expression of the translation vector of the transformation */ |
| inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); } |
| /** \returns a writable expression of the translation vector of the transformation */ |
| inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); } |
| |
| /** \returns an expression of the product between the transform \c *this and a matrix expression \a other |
| * |
| * The right hand side \a other might be either: |
| * \li a vector of size Dim, |
| * \li an homogeneous vector of size Dim+1, |
| * \li a transformation matrix of size Dim+1 x Dim+1. |
| */ |
| // note: this function is defined here because some compilers cannot find the respective declaration |
| template<typename OtherDerived> |
| inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType |
| operator * (const MatrixBase<OtherDerived> &other) const |
| { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); } |
| |
| /** \returns the product expression of a transformation matrix \a a times a transform \a b |
| * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */ |
| template<typename OtherDerived> |
| friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type |
| operator * (const MatrixBase<OtherDerived> &a, const Transform &b) |
| { return a.derived() * b.matrix(); } |
| |
| /** Contatenates two transformations */ |
| inline const Transform |
| operator * (const Transform& other) const |
| { return Transform(m_matrix * other.matrix()); } |
| |
| /** \sa MatrixBase::setIdentity() */ |
| void setIdentity() { m_matrix.setIdentity(); } |
| |
| template<typename OtherDerived> |
| inline Transform& scale(const MatrixBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| inline Transform& prescale(const MatrixBase<OtherDerived> &other); |
| |
| inline Transform& scale(Scalar s); |
| inline Transform& prescale(Scalar s); |
| |
| template<typename OtherDerived> |
| inline Transform& translate(const MatrixBase<OtherDerived> &other); |
| |
| template<typename OtherDerived> |
| inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); |
| |
| template<typename RotationType> |
| inline Transform& rotate(const RotationType& rotation); |
| |
| template<typename RotationType> |
| inline Transform& prerotate(const RotationType& rotation); |
| |
| Transform& shear(Scalar sx, Scalar sy); |
| Transform& preshear(Scalar sx, Scalar sy); |
| |
| inline Transform& operator=(const TranslationType& t); |
| inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } |
| inline Transform operator*(const TranslationType& t) const; |
| |
| inline Transform& operator=(const ScalingType& t); |
| inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); } |
| inline Transform operator*(const ScalingType& s) const; |
| friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t) |
| { |
| Transform res = t; |
| res.matrix().row(Dim) = t.matrix().row(Dim); |
| res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy(); |
| return res; |
| } |
| |
| template<typename Derived> |
| inline Transform& operator=(const RotationBase<Derived,Dim>& r); |
| template<typename Derived> |
| inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } |
| template<typename Derived> |
| inline Transform operator*(const RotationBase<Derived,Dim>& r) const; |
| |
| LinearMatrixType rotation() const; |
| template<typename RotationMatrixType, typename ScalingMatrixType> |
| void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; |
| template<typename ScalingMatrixType, typename RotationMatrixType> |
| void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; |
| |
| template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); |
| |
| inline const MatrixType inverse(TransformTraits traits = Affine) const; |
| |
| /** \returns a const pointer to the column major internal matrix */ |
| const Scalar* data() const { return m_matrix.data(); } |
| /** \returns a non-const pointer to the column major internal matrix */ |
| Scalar* data() { return m_matrix.data(); } |
| |
| /** \returns \c *this with scalar type casted to \a NewScalarType |
| * |
| * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| * then this function smartly returns a const reference to \c *this. |
| */ |
| template<typename NewScalarType> |
| inline typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const |
| { return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); } |
| |
| /** Copy constructor with scalar type conversion */ |
| template<typename OtherScalarType> |
| inline explicit Transform(const Transform<OtherScalarType,Dim>& other) |
| { m_matrix = other.matrix().template cast<Scalar>(); } |
| |
| /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| * determined by \a prec. |
| * |
| * \sa MatrixBase::isApprox() */ |
| bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const |
| { return m_matrix.isApprox(other.m_matrix, prec); } |
| |
| protected: |
| |
| }; |
| |
| /** \ingroup GeometryModule */ |
| typedef Transform<float,2> Transform2f; |
| /** \ingroup GeometryModule */ |
| typedef Transform<float,3> Transform3f; |
| /** \ingroup GeometryModule */ |
| typedef Transform<double,2> Transform2d; |
| /** \ingroup GeometryModule */ |
| typedef Transform<double,3> Transform3d; |
| |
| /************************** |
| *** Optional QT support *** |
| **************************/ |
| |
| #ifdef EIGEN_QT_SUPPORT |
| /** Initialises \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim> |
| Transform<Scalar,Dim>::Transform(const QMatrix& other) |
| { |
| *this = other; |
| } |
| |
| /** Set \c *this from a QMatrix assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim> |
| Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other) |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(), |
| 0, 0, 1; |
| return *this; |
| } |
| |
| /** \returns a QMatrix from \c *this assuming the dimension is 2. |
| * |
| * \warning this convertion might loss data if \c *this is not affine |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim> |
| QMatrix Transform<Scalar,Dim>::toQMatrix(void) const |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return QMatrix(other.coeffRef(0,0), other.coeffRef(1,0), |
| other.coeffRef(0,1), other.coeffRef(1,1), |
| other.coeffRef(0,2), other.coeffRef(1,2)); |
| } |
| |
| /** Initialises \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim> |
| Transform<Scalar,Dim>::Transform(const QTransform& other) |
| { |
| *this = other; |
| } |
| |
| /** Set \c *this from a QTransform assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim> |
| Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other) |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix << other.m11(), other.m21(), other.dx(), |
| other.m12(), other.m22(), other.dy(), |
| other.m13(), other.m23(), other.m33(); |
| return *this; |
| } |
| |
| /** \returns a QTransform from \c *this assuming the dimension is 2. |
| * |
| * This function is available only if the token EIGEN_QT_SUPPORT is defined. |
| */ |
| template<typename Scalar, int Dim> |
| QMatrix Transform<Scalar,Dim>::toQTransform(void) const |
| { |
| EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| return QTransform(other.coeffRef(0,0), other.coeffRef(1,0), other.coeffRef(2,0) |
| other.coeffRef(0,1), other.coeffRef(1,1), other.coeffRef(2,1) |
| other.coeffRef(0,2), other.coeffRef(1,2), other.coeffRef(2,2); |
| } |
| #endif |
| |
| /********************* |
| *** Procedural API *** |
| *********************/ |
| |
| /** Applies on the right the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa prescale() |
| */ |
| template<typename Scalar, int Dim> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| linear() = (linear() * other.asDiagonal()).lazy(); |
| return *this; |
| } |
| |
| /** Applies on the right a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa prescale(Scalar) |
| */ |
| template<typename Scalar, int Dim> |
| inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s) |
| { |
| linear() *= s; |
| return *this; |
| } |
| |
| /** Applies on the left the non uniform scale transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \sa scale() |
| */ |
| template<typename Scalar, int Dim> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy(); |
| return *this; |
| } |
| |
| /** Applies on the left a uniform scale of a factor \a c to \c *this |
| * and returns a reference to \c *this. |
| * \sa scale(Scalar) |
| */ |
| template<typename Scalar, int Dim> |
| inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s) |
| { |
| m_matrix.template corner<Dim,HDim>(TopLeft) *= s; |
| return *this; |
| } |
| |
| /** Applies on the right the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa pretranslate() |
| */ |
| template<typename Scalar, int Dim> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| translation() += linear() * other; |
| return *this; |
| } |
| |
| /** Applies on the left the translation matrix represented by the vector \a other |
| * to \c *this and returns a reference to \c *this. |
| * \sa translate() |
| */ |
| template<typename Scalar, int Dim> |
| template<typename OtherDerived> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other) |
| { |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) |
| translation() += other; |
| return *this; |
| } |
| |
| /** Applies on the right the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * The template parameter \a RotationType is the type of the rotation which |
| * must be known by ei_toRotationMatrix<>. |
| * |
| * Natively supported types includes: |
| * - any scalar (2D), |
| * - a Dim x Dim matrix expression, |
| * - a Quaternion (3D), |
| * - a AngleAxis (3D) |
| * |
| * This mechanism is easily extendable to support user types such as Euler angles, |
| * or a pair of Quaternion for 4D rotations. |
| * |
| * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) |
| */ |
| template<typename Scalar, int Dim> |
| template<typename RotationType> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::rotate(const RotationType& rotation) |
| { |
| linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation); |
| return *this; |
| } |
| |
| /** Applies on the left the rotation represented by the rotation \a rotation |
| * to \c *this and returns a reference to \c *this. |
| * |
| * See rotate() for further details. |
| * |
| * \sa rotate() |
| */ |
| template<typename Scalar, int Dim> |
| template<typename RotationType> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::prerotate(const RotationType& rotation) |
| { |
| m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation) |
| * m_matrix.template block<Dim,HDim>(0,0); |
| return *this; |
| } |
| |
| /** Applies on the right the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa preshear() |
| */ |
| template<typename Scalar, int Dim> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy) |
| { |
| EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| VectorType tmp = linear().col(0)*sy + linear().col(1); |
| linear() << linear().col(0) + linear().col(1)*sx, tmp; |
| return *this; |
| } |
| |
| /** Applies on the left the shear transformation represented |
| * by the vector \a other to \c *this and returns a reference to \c *this. |
| * \warning 2D only. |
| * \sa shear() |
| */ |
| template<typename Scalar, int Dim> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy) |
| { |
| EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) |
| m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); |
| return *this; |
| } |
| |
| /****************************************************** |
| *** Scaling, Translation and Rotation compatibility *** |
| ******************************************************/ |
| |
| template<typename Scalar, int Dim> |
| inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t) |
| { |
| linear().setIdentity(); |
| translation() = t.vector(); |
| m_matrix.template block<1,Dim>(Dim,0).setZero(); |
| m_matrix(Dim,Dim) = Scalar(1); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim> |
| inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const |
| { |
| Transform res = *this; |
| res.translate(t.vector()); |
| return res; |
| } |
| |
| template<typename Scalar, int Dim> |
| inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s) |
| { |
| m_matrix.setZero(); |
| linear().diagonal() = s.coeffs(); |
| m_matrix.coeffRef(Dim,Dim) = Scalar(1); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim> |
| inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const |
| { |
| Transform res = *this; |
| res.scale(s.coeffs()); |
| return res; |
| } |
| |
| template<typename Scalar, int Dim> |
| template<typename Derived> |
| inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r) |
| { |
| linear() = ei_toRotationMatrix<Scalar,Dim>(r); |
| translation().setZero(); |
| m_matrix.template block<1,Dim>(Dim,0).setZero(); |
| m_matrix.coeffRef(Dim,Dim) = Scalar(1); |
| return *this; |
| } |
| |
| template<typename Scalar, int Dim> |
| template<typename Derived> |
| inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const |
| { |
| Transform res = *this; |
| res.rotate(r.derived()); |
| return res; |
| } |
| |
| /************************ |
| *** Special functions *** |
| ************************/ |
| |
| /** \returns the rotation part of the transformation |
| * \nonstableyet |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), computeScalingRotation(), class SVD |
| */ |
| template<typename Scalar, int Dim> |
| typename Transform<Scalar,Dim>::LinearMatrixType |
| Transform<Scalar,Dim>::rotation() const |
| { |
| LinearMatrixType result; |
| computeRotationScaling(&result, (LinearMatrixType*)0); |
| return result; |
| } |
| |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * \nonstableyet |
| * |
| * \svd_module |
| * |
| * \sa computeScalingRotation(), rotation(), class SVD |
| */ |
| template<typename Scalar, int Dim> |
| template<typename RotationMatrixType, typename ScalingMatrixType> |
| void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const |
| { |
| linear().svd().computeRotationScaling(rotation, scaling); |
| } |
| |
| /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being |
| * not necessarily positive. |
| * |
| * If either pointer is zero, the corresponding computation is skipped. |
| * |
| * \nonstableyet |
| * |
| * \svd_module |
| * |
| * \sa computeRotationScaling(), rotation(), class SVD |
| */ |
| template<typename Scalar, int Dim> |
| template<typename ScalingMatrixType, typename RotationMatrixType> |
| void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const |
| { |
| linear().svd().computeScalingRotation(scaling, rotation); |
| } |
| |
| /** Convenient method to set \c *this from a position, orientation and scale |
| * of a 3D object. |
| */ |
| template<typename Scalar, int Dim> |
| template<typename PositionDerived, typename OrientationType, typename ScaleDerived> |
| Transform<Scalar,Dim>& |
| Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, |
| const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) |
| { |
| linear() = ei_toRotationMatrix<Scalar,Dim>(orientation); |
| linear() *= scale.asDiagonal(); |
| translation() = position; |
| m_matrix.template block<1,Dim>(Dim,0).setZero(); |
| m_matrix(Dim,Dim) = Scalar(1); |
| return *this; |
| } |
| |
| /** \nonstableyet |
| * |
| * \returns the inverse transformation matrix according to some given knowledge |
| * on \c *this. |
| * |
| * \param traits allows to optimize the inversion process when the transformion |
| * is known to be not a general transformation. The possible values are: |
| * - Projective if the transformation is not necessarily affine, i.e., if the |
| * last row is not guaranteed to be [0 ... 0 1] |
| * - Affine is the default, the last row is assumed to be [0 ... 0 1] |
| * - Isometry if the transformation is only a concatenations of translations |
| * and rotations. |
| * |
| * \warning unless \a traits is always set to NoShear or NoScaling, this function |
| * requires the generic inverse method of MatrixBase defined in the LU module. If |
| * you forget to include this module, then you will get hard to debug linking errors. |
| * |
| * \sa MatrixBase::inverse() |
| */ |
| template<typename Scalar, int Dim> |
| inline const typename Transform<Scalar,Dim>::MatrixType |
| Transform<Scalar,Dim>::inverse(TransformTraits traits) const |
| { |
| if (traits == Projective) |
| { |
| return m_matrix.inverse(); |
| } |
| else |
| { |
| MatrixType res; |
| if (traits == Affine) |
| { |
| res.template corner<Dim,Dim>(TopLeft) = linear().inverse(); |
| } |
| else if (traits == Isometry) |
| { |
| res.template corner<Dim,Dim>(TopLeft) = linear().transpose(); |
| } |
| else |
| { |
| ei_assert("invalid traits value in Transform::inverse()"); |
| } |
| // translation and remaining parts |
| res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation(); |
| res.template corner<1,Dim>(BottomLeft).setZero(); |
| res.coeffRef(Dim,Dim) = Scalar(1); |
| return res; |
| } |
| } |
| |
| /***************************************************** |
| *** Specializations of operator* with a MatrixBase *** |
| *****************************************************/ |
| |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim> |
| { |
| typedef Transform<typename Other::Scalar,Dim> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.matrix() * other; } |
| }; |
| |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim> |
| { |
| typedef Transform<typename Other::Scalar,Dim> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef TransformType ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { |
| TransformType res; |
| res.translation() = tr.translation(); |
| res.matrix().row(Dim) = tr.matrix().row(Dim); |
| res.linear() = (tr.linear() * other).lazy(); |
| return res; |
| } |
| }; |
| |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_product_impl<Other,Dim,HDim, HDim,1> |
| { |
| typedef Transform<typename Other::Scalar,Dim> TransformType; |
| typedef typename TransformType::MatrixType MatrixType; |
| typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return tr.matrix() * other; } |
| }; |
| |
| template<typename Other, int Dim, int HDim> |
| struct ei_transform_product_impl<Other,Dim,HDim, Dim,1> |
| { |
| typedef typename Other::Scalar Scalar; |
| typedef Transform<Scalar,Dim> TransformType; |
| typedef typename TransformType::LinearPart MatrixType; |
| typedef const CwiseUnaryOp< |
| ei_scalar_multiple_op<Scalar>, |
| NestByValue<CwiseBinaryOp< |
| ei_scalar_sum_op<Scalar>, |
| NestByValue<typename ProductReturnType<NestByValue<MatrixType>,Other>::Type >, |
| NestByValue<typename TransformType::TranslationPart> > > |
| > ResultType; |
| // FIXME should we offer an optimized version when the last row is known to be 0,0...,0,1 ? |
| static ResultType run(const TransformType& tr, const Other& other) |
| { return ((tr.linear().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue() |
| * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); } |
| }; |
| |
| #endif // EIGEN_TRANSFORM_H |