| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_PARTIALLU_H |
| #define EIGEN_PARTIALLU_H |
| |
| /** \ingroup LU_Module |
| * |
| * \class PartialLU |
| * |
| * \brief LU decomposition of a matrix with partial pivoting, and related features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the LU decomposition |
| * |
| * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
| * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
| * is a permutation matrix. |
| * |
| * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible matrices. |
| * So in this class, we plainly require that and take advantage of that to do some simplifications and optimizations. |
| * This class will assert that the matrix is square, but it won't (actually it can't) check that the matrix is invertible: |
| * it is your task to check that you only use this decomposition on invertible matrices. |
| * |
| * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided by class LU. |
| * |
| * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
| * such as rank computation. If you need these features, use class LU. |
| * |
| * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses. On the other hand, |
| * it is \b not suitable to determine whether a given matrix is invertible. |
| * |
| * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
| * |
| * \sa MatrixBase::partialLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class LU |
| */ |
| template<typename MatrixType> class PartialLU |
| { |
| public: |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; |
| typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; |
| |
| enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN( |
| MatrixType::MaxColsAtCompileTime, |
| MatrixType::MaxRowsAtCompileTime) |
| }; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via PartialLU::compute(const MatrixType&). |
| */ |
| PartialLU(); |
| |
| /** Constructor. |
| * |
| * \param matrix the matrix of which to compute the LU decomposition. |
| * |
| * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
| * If you need to deal with non-full rank, use class LU instead. |
| */ |
| PartialLU(const MatrixType& matrix); |
| |
| PartialLU& compute(const MatrixType& matrix); |
| |
| /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
| * unit-lower-triangular part is L (at least for square matrices; in the non-square |
| * case, special care is needed, see the documentation of class LU). |
| * |
| * \sa matrixL(), matrixU() |
| */ |
| inline const MatrixType& matrixLU() const |
| { |
| ei_assert(m_isInitialized && "PartialLU is not initialized."); |
| return m_lu; |
| } |
| |
| /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed, |
| * representing the P permutation i.e. the permutation of the rows. For its precise meaning, |
| * see the examples given in the documentation of class LU. |
| */ |
| inline const IntColVectorType& permutationP() const |
| { |
| ei_assert(m_isInitialized && "PartialLU is not initialized."); |
| return m_p; |
| } |
| |
| /** This method finds the solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the LU decomposition. Since if this partial pivoting decomposition the matrix is assumed |
| * to have full rank, such a solution is assumed to exist and to be unique. |
| * |
| * \warning Again, if your matrix may not have full rank, use class LU instead. See LU::solve(). |
| * |
| * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
| * the only requirement in order for the equation to make sense is that |
| * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
| * \param result a pointer to the vector or matrix in which to store the solution, if any exists. |
| * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols(). |
| * If no solution exists, *result is left with undefined coefficients. |
| * |
| * Example: \include PartialLU_solve.cpp |
| * Output: \verbinclude PartialLU_solve.out |
| * |
| * \sa TriangularView::solve(), inverse(), computeInverse() |
| */ |
| template<typename OtherDerived, typename ResultType> |
| void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const; |
| |
| /** \returns the determinant of the matrix of which |
| * *this is the LU decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the LU decomposition has already been computed. |
| * |
| * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
| * optimized paths. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * |
| * \sa MatrixBase::determinant() |
| */ |
| typename ei_traits<MatrixType>::Scalar determinant() const; |
| |
| /** Computes the inverse of the matrix of which *this is the LU decomposition. |
| * |
| * \param result a pointer to the matrix into which to store the inverse. Resized if needed. |
| * |
| * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
| * invertibility, use class LU instead. |
| * |
| * \sa MatrixBase::computeInverse(), inverse() |
| */ |
| inline void computeInverse(MatrixType *result) const |
| { |
| solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result); |
| } |
| |
| /** \returns the inverse of the matrix of which *this is the LU decomposition. |
| * |
| * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
| * invertibility, use class LU instead. |
| * |
| * \sa computeInverse(), MatrixBase::inverse() |
| */ |
| inline MatrixType inverse() const |
| { |
| MatrixType result; |
| computeInverse(&result); |
| return result; |
| } |
| |
| protected: |
| MatrixType m_lu; |
| IntColVectorType m_p; |
| int m_det_p; |
| bool m_isInitialized; |
| }; |
| |
| template<typename MatrixType> |
| PartialLU<MatrixType>::PartialLU() |
| : m_lu(), |
| m_p(), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| } |
| |
| template<typename MatrixType> |
| PartialLU<MatrixType>::PartialLU(const MatrixType& matrix) |
| : m_lu(), |
| m_p(), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| compute(matrix); |
| } |
| |
| |
| |
| /** This is the blocked version of ei_lu_unblocked() */ |
| template<typename Scalar, int StorageOrder> |
| struct ei_partial_lu_impl |
| { |
| // FIXME add a stride to Map, so that the following mapping becomes easier, |
| // another option would be to create an expression being able to automatically |
| // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly |
| // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, |
| // and Block. |
| typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; |
| typedef Block<MapLU, Dynamic, Dynamic> MatrixType; |
| typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
| |
| /** \internal performs the LU decomposition in-place of the matrix \a lu |
| * using an unblocked algorithm. |
| * |
| * In addition, this function returns the row transpositions in the |
| * vector \a row_transpositions which must have a size equal to the number |
| * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| * which returns the actual number of transpositions. |
| */ |
| static void unblocked_lu(MatrixType& lu, int* row_transpositions, int& nb_transpositions) |
| { |
| const int rows = lu.rows(); |
| const int size = std::min(lu.rows(),lu.cols()); |
| nb_transpositions = 0; |
| for(int k = 0; k < size; ++k) |
| { |
| int row_of_biggest_in_col; |
| lu.block(k,k,rows-k,1).cwise().abs().maxCoeff(&row_of_biggest_in_col); |
| row_of_biggest_in_col += k; |
| |
| row_transpositions[k] = row_of_biggest_in_col; |
| |
| if(k != row_of_biggest_in_col) |
| { |
| lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
| ++nb_transpositions; |
| } |
| |
| if(k<rows-1) |
| { |
| int rrows = rows-k-1; |
| int rsize = size-k-1; |
| lu.col(k).end(rrows) /= lu.coeff(k,k); |
| lu.corner(BottomRight,rrows,rsize).noalias() -= lu.col(k).end(rrows) * lu.row(k).end(rsize); |
| } |
| } |
| } |
| |
| /** \internal performs the LU decomposition in-place of the matrix represented |
| * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
| * recursive, blocked algorithm. |
| * |
| * In addition, this function returns the row transpositions in the |
| * vector \a row_transpositions which must have a size equal to the number |
| * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| * which returns the actual number of transpositions. |
| * |
| * \note This very low level interface using pointers, etc. is to: |
| * 1 - reduce the number of instanciations to the strict minimum |
| * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > |
| */ |
| static void blocked_lu(int rows, int cols, Scalar* lu_data, int luStride, int* row_transpositions, int& nb_transpositions, int maxBlockSize=256) |
| { |
| MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); |
| MatrixType lu(lu1,0,0,rows,cols); |
| |
| const int size = std::min(rows,cols); |
| |
| // if the matrix is too small, no blocking: |
| if(size<=16) |
| { |
| unblocked_lu(lu, row_transpositions, nb_transpositions); |
| return; |
| } |
| |
| // automatically adjust the number of subdivisions to the size |
| // of the matrix so that there is enough sub blocks: |
| int blockSize; |
| { |
| blockSize = size/8; |
| blockSize = (blockSize/16)*16; |
| blockSize = std::min(std::max(blockSize,8), maxBlockSize); |
| } |
| |
| nb_transpositions = 0; |
| for(int k = 0; k < size; k+=blockSize) |
| { |
| int bs = std::min(size-k,blockSize); // actual size of the block |
| int trows = rows - k - bs; // trailing rows |
| int tsize = size - k - bs; // trailing size |
| |
| // partition the matrix: |
| // A00 | A01 | A02 |
| // lu = A10 | A11 | A12 |
| // A20 | A21 | A22 |
| BlockType A_0(lu,0,0,rows,k); |
| BlockType A_2(lu,0,k+bs,rows,tsize); |
| BlockType A11(lu,k,k,bs,bs); |
| BlockType A12(lu,k,k+bs,bs,tsize); |
| BlockType A21(lu,k+bs,k,trows,bs); |
| BlockType A22(lu,k+bs,k+bs,trows,tsize); |
| |
| int nb_transpositions_in_panel; |
| // recursively calls the blocked LU algorithm with a very small |
| // blocking size: |
| blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
| row_transpositions+k, nb_transpositions_in_panel, 16); |
| nb_transpositions += nb_transpositions_in_panel; |
| |
| // update permutations and apply them to A10 |
| for(int i=k;i<k+bs; ++i) |
| { |
| int piv = (row_transpositions[i] += k); |
| A_0.row(i).swap(A_0.row(piv)); |
| } |
| |
| if(trows) |
| { |
| // apply permutations to A_2 |
| for(int i=k;i<k+bs; ++i) |
| A_2.row(i).swap(A_2.row(row_transpositions[i])); |
| |
| // A12 = A11^-1 A12 |
| A11.template triangularView<UnitLowerTriangular>().solveInPlace(A12); |
| |
| A22 -= A21 * A12; |
| } |
| } |
| } |
| }; |
| |
| /** \internal performs the LU decomposition with partial pivoting in-place. |
| */ |
| template<typename MatrixType, typename IntVector> |
| void ei_partial_lu_inplace(MatrixType& lu, IntVector& row_transpositions, int& nb_transpositions) |
| { |
| ei_assert(lu.cols() == row_transpositions.size()); |
| ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
| |
| ei_partial_lu_impl |
| <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> |
| ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.stride(), &row_transpositions.coeffRef(0), nb_transpositions); |
| } |
| |
| template<typename MatrixType> |
| PartialLU<MatrixType>& PartialLU<MatrixType>::compute(const MatrixType& matrix) |
| { |
| m_lu = matrix; |
| m_p.resize(matrix.rows()); |
| |
| ei_assert(matrix.rows() == matrix.cols() && "PartialLU is only for square (and moreover invertible) matrices"); |
| const int size = matrix.rows(); |
| |
| IntColVectorType rows_transpositions(size); |
| |
| int nb_transpositions; |
| ei_partial_lu_inplace(m_lu, rows_transpositions, nb_transpositions); |
| m_det_p = (nb_transpositions%2) ? -1 : 1; |
| |
| for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k; |
| for(int k = size-1; k >= 0; --k) |
| std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k))); |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| template<typename MatrixType> |
| typename ei_traits<MatrixType>::Scalar PartialLU<MatrixType>::determinant() const |
| { |
| ei_assert(m_isInitialized && "PartialLU is not initialized."); |
| return Scalar(m_det_p) * m_lu.diagonal().prod(); |
| } |
| |
| template<typename MatrixType> |
| template<typename OtherDerived, typename ResultType> |
| void PartialLU<MatrixType>::solve( |
| const MatrixBase<OtherDerived>& b, |
| ResultType *result |
| ) const |
| { |
| ei_assert(m_isInitialized && "PartialLU is not initialized."); |
| |
| /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
| * So we proceed as follows: |
| * Step 1: compute c = Pb. |
| * Step 2: replace c by the solution x to Lx = c. |
| * Step 3: replace c by the solution x to Ux = c. |
| */ |
| |
| const int size = m_lu.rows(); |
| ei_assert(b.rows() == size); |
| |
| result->resize(size, b.cols()); |
| |
| // Step 1 |
| for(int i = 0; i < size; ++i) result->row(m_p.coeff(i)) = b.row(i); |
| |
| // Step 2 |
| m_lu.template triangularView<UnitLowerTriangular>().solveInPlace(*result); |
| |
| // Step 3 |
| m_lu.template triangularView<UpperTriangular>().solveInPlace(*result); |
| } |
| |
| /** \lu_module |
| * |
| * \return the LU decomposition of \c *this. |
| * |
| * \sa class LU |
| */ |
| template<typename Derived> |
| inline const PartialLU<typename MatrixBase<Derived>::PlainMatrixType> |
| MatrixBase<Derived>::partialLu() const |
| { |
| return PartialLU<PlainMatrixType>(eval()); |
| } |
| |
| #endif // EIGEN_PARTIALLU_H |